Base de dados : LILACS
Pesquisa : A11.872.700.250.875 [Categoria DeCS]
Referências encontradas : 3 [refinar]
Mostrando: 1 .. 3   no formato [Detalhado]

página 1 de 1

  1 / 3 LILACS  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
Texto completo
Id: biblio-911604
Autor: Silva, Camila Leal Lopes da.
Título: Terapias alternativas para o diabetes mellitus tipo 1: caracterização funcional do gene Txnip na diferenciação ß-pancreática e desenvolvimento de biomaterial inovador para microencapsulamento celular / Alternative therapies for type 1 diabetes mellitus: functional characterization of Txnip gene during -pancreatic differentiation and generation of an innovative biomaterial for cell microencapsulation.
Fonte: São Paulo; s.n; 2018. 201 p. ilus, tab, graf.
Idioma: pt.
Tese: Apresentada a Universidade de São Paulo. Instituto de Química para obtenção do grau de Doutor.
Resumo: O diabetes mellitus do tipo 1 (DM1) é uma doença causada pela destruição autoimune das células-ß produtoras de insulina do pâncreas. O transplante de ilhotas pancreáticas é um procedimento tecnicamente simples sendo uma alternativa terapêutica interessante para o DM1. Entretanto, a oferta limitada de pâncreas de doadores falecidos e a necessidade de imunossupressão crônica são fatores que limitam a aplicabilidade dessa modalidade de transplante. Neste trabalho foram estudadas duas estratégias que visam oferecer soluções aos fatores limitantes do transplante de ilhotas pancreáticas. Na primeira parte do trabalho, o mecanismo molecular que dirige o processo de diferenciação de células-tronco embrionárias murinas (murine embryonic stem cells, mESCs) em células produtoras de insulina (insulin producing cells, IPCs) foi analisado visando otimizar o processo de diferenciação. Nós selecionamos o gene Thioredoxin interacting protein (Txnip), diferencialmente expresso ao longo da diferenciação ß-pancreática, para realizar um estudo funcional através da modificação genética de mESCs. Os resultados obtidos permitiram verificar que a inibição de Txnip na diferenciação ß-pancreática pode induzir a diferenciação de IPCs com maior expressão de marcadores de células- e mais responsivas ao estímulo de glicose. Além disso, o modelo de zebrafish permitiu elucidar in vivo o papel de Txnip durante a organogênese pancreática, revelando que a inibição desse gene é capaz de aumentar a massa de células-ß através do estimulo de células presentes no ducto extra-pancreático. Dessa forma, a inibição de Txnip pode aprimorar os protocolos para obtenção de IPCs a partir de células-tronco pluripotentes. A exposição crônica a agentes imunossupressores diabetogênicos e a perda de componentes de matriz extracelular durante o isolamento de ilhotas pancreáticas são causas para a perda de funcionalidade do enxerto. Dessa forma, na segunda parte do trabalho, um biomaterial inovador foi desenvolvido, contendo um polímero de laminina (polilaminina, PLn) para o encapsulamento e a imunoproteção de ilhotas pancreáticas. As cápsulas produzidas com o biomaterial desenvolvido, Bioprotect-Pln, são térmica- e mecanicamente estáveis, além de serem biocompatíveis e capazes de imunoproteger ilhotas pancreáticas humanas in vitro. O encapsulamento com Bioprotect-Pln preserva a funcionalidade de ilhotas pancreáticas. Além disso, quando cápsulas vazias de Bioprotect-Pln foram implantadas em camundongos imunocompetentes, houve atenuação da resposta inflamatória ao implante, uma das principais causas para perda de funcionalidade de enxertos encapsulados. Os resultados obtidos indicam que a presença de polilaminina na malha capsular induz uma resposta anti-inflamatória que pode beneficiar a preservação do enxerto de ilhotas pancreáticas encapsuladas. Atualmente, o transplante de ilhotas pancreáticas é visto como a terapia celular mais promissora para atingir a independência de insulina em pacientes de DM1, porém, a aplicabilidade desse transplante ainda é limitada. Este trabalho contribuiu para a elucidação dos mecanismos moleculares que podem aprimorar o processo de diferenciação de célulastronco pluripotentes em IPCs, estabelecendo uma fonte alternativa de células para a terapiade reposição, e, também, estabeleceu um biomaterial inovador, capaz de diminuir a resposta inflamatória ao implante de microcápsulas e de imunoproteger células microencapsuladas. Desta forma, este trabalho contribui para o estabelecimento da terapia de reposição celular para pacientes de DM1

Type 1 diabetes mellitus (DM1) is a disease caused by the autoimmune destruction of insulin-producing pancreatic ß-cells. Pancreatic islet transplantation is a technically simple procedure and an interesting alternative therapy for DM1, however, the limited supply of cadaveric donated pancreas and the need of life-long immunosuppression are factors which limit its applicability. In the present work, two strategies were employed aiming at establishing viable solutions for the factors limiting pancreatic islet transplantation. In the first part of this study, the molecular mechanism which drives differentiation of murine embryonic stem cells (mESCs) into insulin producing cells (IPCs) was analyzed in order to optimize the differentiation process. The Thioredoxin interacting protein (Txnip) gene, which is differentially expressed along -pancreatic differentiation, was selected to undergo a functional analysis by genetically modifying mESCs. The results allowed us to verify that Txnip inhibition during the ß-pancreatic differentiation process can induce differentiation of IPCs displaying higher expression of ß-cell markers and being more responsive to glucose stimuli. In addition, the zebrafish model allowed us to elucidate in vivo the role of Txnip during pancreatic organogenesis, revealing that its inhibition is able to increase the mass of ß-cells through stimulation of extra-pancreatic ductal cells. Therefore, Txnip inhibition may turbinate IPCs differentiation from pluripotent stem cells. The chronic exposure to diabetogenic immunosuppressive agents and the loss of extracellular matrix components during isolation of pancreatic islets are probable causes for the loss of pancreatic islet graft functionality. Therefore, in the second part of this study, an innovative biomaterial was developed by incorporating a laminin polymer (polylaminin, PLn) for the encapsulation and immunoprotection of pancreatic islets. The capsules produced with the novel biomaterial, Bioprotect-Pln, are biocompatible, thermally and mechanically stable and are able to immunoprotect human pancreatic islets in vitro. Encapsulation with Bioprotect-Pln preserves the functionality of pancreatic islets. In addition, when empty Bioprotect-Pln capsules were implanted into immunocompetent mice, an attenuation of the inflammatory response to the implant occurred, this being one of the main causes of encapsulated graft loss. The results indicate that polylaminin addition to the capsular mesh induces an anti-inflammatory response which may favor preservation of the engrafted encapsulated pancreatic islets. Pancreatic islet transplantation is currently seen as the most promising cell therapy to achieve insulin independence in DM1 patients, however, the applicability of this transplant is still limited. This work contributed to the elucidation of the molecular mechanisms which can turbinate the differentiation of pluripotent stem cells into IPCs, establishing an alternative source of cells for the replacement therapy, and, also, established an innovative biomaterial which is able to decrease the inflammatory response to the graft, thereby immunoprotecting the microencapsulated cells. Therefore, this work contributes to the establishment of the cell replacement therapy for DM1 patients
Descritores: Terapias Complementares/estatística & dados numéricos
Diabetes Autoimune Latente em Adultos/tratamento farmacológico
Células-Tronco Embrionárias Murinas
-Células Secretoras de Insulina
Transplante das Ilhotas Pancreáticas
Laminina
Responsável: BR40.1 - DBD - Divisão de Biblioteca e Documentacão do Conjunto das Químicas
BR40.1; T574.87, S586t. 30100026124-Q


  2 / 3 LILACS  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
Texto completo
Texto completo
Id: biblio-846936
Autor: Kossugue, Patricia Mayumi.
Título: Diferenciação de células-tronco embrionárias murinas (mESCs) em células produtoras de insulina (IPCs) e caracterização funcional do gene Purkinje cell protein 4 (Pcp4) neste processo / Differentiation of murine embryonic stem cells (mESCs) into insulin-producing cells (IPCs) and functional characterization of the Purkinje Cell Protein 4 (Pcp4) gene in this process.
Fonte: São Paulo; s.n; 2013. 112 p. tab, graf, ilus.
Idioma: pt.
Tese: Apresentada a Universidade de São Paulo. Instituto de Química para obtenção do grau de Doutor.
Resumo: Fontes alternativas de células ß têm sido estudadas para o tratamento de Diabetes mellitus tipo 1, dentre as quais a mais promissora consiste das células-tronco diferenciadas em células produtoras de insulina (IPCs). Alguns trabalhos demonstram a capacidade de células-tronco embrionárias murinas (mESCs) de formarem estruturas semelhantes a ilhotas pancreáticas, porém, os níveis de produção de insulina são insuficientes para a reversão do diabetes em camundongos diabetizados. Este trabalho visa desenvolver um protocolo adequado para geração de IPCs e contribuir para a identificação e caracterização funcional de novos genes associados à organogênese pancreática. Logo no início da diferenciação das mESCs em IPCs, foi possível verificar o surgimento de células progenitoras, evidenciado pela expressão de marcadores importantes da diferenciação beta-pancreática. Ao final do processo de diferenciação in vitro, ocorreu a formação de agrupamentos (clusters) semelhantes a ilhotas, corando positivamente por ditizona, que é específica para células ß-pancreáticas. Para avaliar seu potencial in vivo, estes clusters foram microencapsulados em Biodritina® e transplantados em camundongos diabetizados. Apesar dos níveis de insulina produzidos não serem suficientes para estabelecer a normoglicemia, os animais tratados com IPCs apresentaram melhores condições, quando comparados ao grupo controle, tendo melhor controle glicêmico, ganho de massa corpórea e melhor aparência da pelagem, na ausência de apatia. Além disso, análise dos clusters transplantados nestes animais indicou aumento da expressão de genes relacionados à maturação das células ß. Porém, quando estes clusters foram microencapsuladas em Bioprotect® e submetidos à maturação in vivo em animais normais, ocorreu um aumento drástico na expressão de todos os genes analisados, indicando sua maturação completa em células beta. O transplante destas células completamente maturadas em animais diabetizados, tornou-os normoglicêmicos e capazes de responder ao teste de tolerância à glicose (OGTT) de forma semelhante aos animais normais. A segunda parte do trabalho visou analisar genes diferencialmente expressos identificados em estudo anterior do nosso grupo, comparando, através de DNA microarray, mESCs indiferenciadas e diferenciadas em IPCs. Um dos genes diferencialmente expressos é aquele que codifica para a Purkinge cell protein 4 (Pcp4), sendo 3.700 vezes mais expresso em IPCs. Para investigar o possível papel do gene Pcp4 em células ß e no processo de diferenciação ß-pancreática, adotou-se o enfoque de genômica funcional, superexpressando e inibindo sua expressão em células MIN-6 e mESCs. Apesar da alteração na expressão de Pcp4 em células MIN-6 não ter interferido de forma expressiva na expressão dos genes analisados, quando inibido, modificou o perfil da curva de crescimento celular, aumentando seu tempo de dobramento de forma significativa e diminuindo da viabilidade celular em ensaios de indução de apoptose. Já na diferenciação de mESCs em IPCs, a superexpressão de Pcp4 interferiu de forma positiva apresentando uma tendência a aumentar a expressão dos genes relacionado à diferenciaçãoß-pancreática. Concluindo, desenvolvemos um novo protocolo de diferenciação de mESCs em IPCs as quais foram capazes de reverter o diabetes em camundongos diabetizados e descrevemos, pela primeira vez, o gene Pcp4 como sendo expresso em células ß-pancreáticas, podendo estar relacionado à manutenção da viabilidade celular e maturação destas células

New cellular sources for type 1 Diabetes mellitus treatment have been previously investigated, the most promising of which seems to be the insulin producing cells (IPCs), obtained by stem cells differentiation. Some reports show that murine embryonic stem cells (mESCs) are able to form islet-like structures, however, their insulin production is insufficient to render diabetic mice normoglycemic. This work aims at developing an adequate protocol for generation of IPCs and searching for new genes which could be involved in the pancreatic organogenesis process. Early on during mESCs differentiation into IPCs, we observed the presence of progenitor cells, which were able to express pancreatic ß-cell markers. At the end of the differentiation process, the islet-like clusters positively stained for the insulin-specific dithizone. These clusters were microencapsulated in Biodritin® microcapsules, and then transplanted into diabetized mice. Although the levels of insulin production were insufficient for the animals to achieve normoglycemia, those which received IPCs displayed improved conditions, when compared to the control group, as judged by a better glycemic control, body weight gain and healthy fur appearance, in the absence of apathy. In addition, when these transplantated clusters were retrieved, high levels of expression of the genes related to ß-cell maturation were detected. IPCs were also microencapsulated in Bioprotect® and subjected to in vivo maturation in normal animals. A dramatic increase of the analyzed genes expression was observed, indicating complete maturation of the differentiated cells. When these cells were transplanted into diabetized mice, these animals achieved normoglycemia and were able to display glucose tolerance test (OGTT) response very similar to that of normal mice. In the second part of this work, we analyzed upregulated genes described in previous work from our group, comparing undifferentiated mESCs to IPCs using a microarray platform. One of these genes is that coding for the Purkinje cell protein 4 (Pcp4), which is 3,700 more expressed than in undifferentiated mESC cells. We adopted a functional genomics approach to investigate the role played by the Pcp4 gene in ß-cells and in ß-cell differentiation, by inducing overexpression and knocking down this gene in MIN-6 and mESC cells. Although the differential expression of Pcp4 in MIN-6 was not able to interfere with the expression of the genes analyzed, we observed different cell growth rates, with increased doubling time and decreased cell viability when its expression was knocked down. In addition, overexpression of Pcp4 in mESCs subjected to differentiation into IPCs apparently increases the expression of genes related to ß-cell differentiation. In conclusion, we developed a new protocol for ESCs differentiation into IPCs, which is able to revert diabetes in diabetized mice, and we also describe here, for the first time, the Pcp4 gene as being expressed in pancreatic ß-cells and possibly being related to maintenance of cell viability and ß-cell maturation
Descritores: Genes
Insulina/fisiologia
-Diabetes Mellitus Tipo 1/prevenção & controle
Células-Tronco Embrionárias/classificação
Expressão Gênica
Ilhotas Pancreáticas
Biologia Molecular
Células-Tronco Embrionárias Murinas/metabolismo
Organogênese
Pâncreas
Células de Purkinje/classificação
Limites: Camundongos
Tipo de Publ: Técnicas In Vitro
Responsável: BR40.1 - DBD - Divisão de Biblioteca e Documentacão do Conjunto das Químicas
BR40.1; T 574.88, K86d. 30100020091


  3 / 3 LILACS  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
Texto completo
Texto completo
Id: biblio-846932
Autor: Forni, Maria Fernanda Pereira de Araújo Demonte.
Título: Bases moleculares da depleção de glutationa sobre a pontencialidade, diferenciação e envelhecimento de células-tronco de pele / Molecular basis of glutathione depletion upon the potenciality, differentiation potential and aging of skin stem cells.
Fonte: São Paulo; s.n; 2013. 160 p. tab, graf, ilus.
Idioma: pt.
Tese: Apresentada a Universidade de São Paulo. Instituto de Química para obtenção do grau de Doutor.
Resumo: A pele está em contínua auto-renovação graças a vários nichos de células-tronco presentes neste tecido. Células progenitoras epidérmicas surgem durante o desenvolvimento embrionário e contribuem para a reposição celular da epiderme durante todo o período de vida dos mamíferos. Neste trabalho, buscou-se analisar o papel da depleção de glutationa durante a estratificação da epiderme embrionária e na manutenção da homeostase no tecido adulto. Encontramos evidências de que este tiol tem um importante papel durante a proliferação da epiderme e formação do folículo capilar. As alterações observadas na ausência de GSH foram relacionados com um padrão diferencial de fosforilação dos fatores de transcrição forkhead-homeobox- tipo-O (FOXO). Em resumo, foi estabelecida uma correlação entre o estado de GSH, a fosforilação de FOXO e o desenvolvimento da epiderme. Para melhor estudar a importância do balanço de GSH, na pele do adulto, e seu papel na manutenção deste tecido, camundongos foram tratados com um inibidor da síntese de GSH e, com N-aceti-lcisteína. Foi observado um aumento da fosforilação de Akt, padrões alterados de fosforilação FOXO e aumento da expressão de genes de genes relacionados à diferenciação. Estes resultados mostram que a via Akt/FOXO desempenha um papel importante na manutenção e diferenciação de células-tronco epidermais. O envelhecimento cronológico leva a alterações morfológicas/funcionais que conduzem à diminuição da auto-renovação, o que ocorre concomitantemente com uma diminuição dos níveis de GSH na pele. Utilizamos, também, animais idosos e avaliamos quais mecanismos eram compartilhados pelo envelhecimento e a depleção deste tiol. Observou-se que uma resposta hiperproliferativa ligada à exaustão de células-tronco pode ser o elo entre a depleção de GSH e o envelhecimento. A influência desse processo também foi investigada no compartimento dérmico, através da análise do impacto da depleção de glutationa sobre a osteogênese de células-tronco mesenquimais murinas. Quando induzidas a se diferenciarem em osso (Alizarin-Red+/Von-Kossa-stain +, aumento dos níveis de mRNA para fosfatase alcalina/osteopontina/osterix), o balanço GSH/GSSG e seu sistema antioxidante correlato é diferencialmente regulado em células-tronco mesenquimais derivadas da derme. Sendo regulado de uma forma redox-dependente através da via de MAPKs. A depleção de GSH leva à diminuição nos níveis de osteogênese em favor da adipogênese, levando ao processo comumente associado ao envelhecimento denominado "adipogenic switc". Em conclusão, os dados obtidos permitem propor um papel central para a glutationa na manutenção/comprometimento de células-tronco na pele

The skin is continuously self-renewing thanks to several stem cell niches. Epidermal progenitor cells arise during embryonic development and contribute to the replenishment of the epidermis during the lifetime of mammals. We set out to analyze the glutathione (GSH) antioxidant system during embryonic epidermis stratification and follicle development and the effect of glutathione withdrawal in this process. We found that glutathione plays an important role during epidermis proliferation and hairshaft formation. The changes observed in the absence of GSH were related to a differential phosphorylation pattern of the forkhead-homeobox-type-O (FOXO) transcription factors. In brief, a correlation between GSH status, FOXO phosphorylation and skin development was established. To further study the importance of GSH in adult skin maintenance and understand the effects of ROS in the Akt/FOXO pathway, we treated cells and mice with an inhibitor of GSH synthesis, and with N-acetyl-cysteine. Increased Akt phosphorylation, altered FOXO phosphorylation patterns and increased gene expression of differentiation-related genes were observed. Our results show that the Akt/FOXO pathway plays an important role in maintenance/differentiation of epidermal stem cells. Chronological ageing leads to morphological/functional changes causing a decline in self-renewal, as well as decreased levels of GSH. We also observed that a cell cycle hyperproliferative response was the link between stem cell exaustion in GSH-depletion and ageing. Dermal mesenchymal stem cells (MSCs), are capable of adipo-chondro- and osteogenesis. Little is known about the impact of ROS in MSC differentiation. We induced murine skin MSCs to differentiate into bone (Alizarin-Red/Von-Kossastain+, increased levels of mRNA for alkalinephosphatase/ osteopontin/osterix). In brief, the balance of GSH/GSSG and related antioxidant system is differentially regulated during this process, found to be regulated in a redox-dependent fashion through the MAPK pathway. When depleted, GSH leads to an adipogenic switch in MSC differentiation. In conclusion, our data leads us to propose a central role for glutathione in the maintenance/commitment of stem cells in skin
Descritores: Bases de Dados de Compostos Químicos
Glutationa/análise
Células-Tronco/metabolismo
-Epiderme
Expressão Gênica
Homeostase/genética
Células-Tronco Embrionárias Murinas
Osteopontina
Envelhecimento da Pele/genética
Limites: Animais
Masculino
Feminino
Camundongos
Responsável: BR40.1 - DBD - Divisão de Biblioteca e Documentacão do Conjunto das Químicas
BR40.1; T 575.88, F727b. 30100020095



página 1 de 1
   


Refinar a pesquisa
  Base de dados : Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde