Base de dados : MEDLINE
Pesquisa : A08.612.220.860 [Categoria DeCS]
Referências encontradas : 16499 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 1650 ir para página                         

  1 / 16499 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28466070
[Au] Autor:Sabbah S; Berg D; Papendorp C; Briggman KL; Berson DM
[Ad] Endereço:Department of Neuroscience, Brown University, Providence, RI 02912.
[Ti] Título:A Cre Mouse Line for Probing Irradiance- and Direction-Encoding Retinal Networks.
[So] Source:eNeuro;4(2), 2017 Mar-Apr.
[Is] ISSN:2373-2822
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Cell type-specific Cre driver lines have revolutionized the analysis of retinal cell types and circuits. We show that the transgenic mouse Rbp4-Cre selectively labels several retinal neuronal types relevant to the encoding of absolute light intensity (irradiance) and visual motion. In the ganglion cell layer (GCL), most marked cells are wide-field spiking polyaxonal amacrine cells (ACs) with sustained irradiance-encoding ON responses that persist during chemical synaptic blockade. Their arbors spread about 1 mm across the retina and are restricted to the inner half of the ON sublamina of the inner plexiform layer (IPL). There, they costratify with dendrites of M2 intrinsically photosensitive retinal ganglion cells (ipRGCs), to which they are tracer coupled. We propose that synaptically driven and intrinsic photocurrents of M2 cells pass through gap junctions to drive AC light responses. Also marked in this mouse are two types of RGCs. R-cells have a bistratified dendritic arbor, weak directional tuning, and irradiance-encoding ON responses. However, they also receive excitatory OFF input, revealed during ON-channel blockade. Serial blockface electron microscopic (SBEM) reconstruction confirms OFF bipolar input, and reveals that some OFF input derives from a novel type of OFF bipolar cell (BC). R-cells innervate specific layers of the dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC). The other marked RGC type (RDS) is bistratified, transient, and ON-OFF direction selective (DS). It apparently innervates the nucleus of the optic tract (NOT). The Rbp4-Cre mouse will be valuable for targeting these cell types for further study and for selectively manipulating them for circuit analysis.
[Mh] Termos MeSH primário: Rede Nervosa/fisiologia
Retina/fisiologia
Sinapses/fisiologia
Vias Visuais/fisiologia
[Mh] Termos MeSH secundário: Animais
Dendritos/metabolismo
Camundongos Transgênicos
Microscopia Eletrônica
Células Ganglionares da Retina/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180308
[Lr] Data última revisão:
180308
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170504
[St] Status:MEDLINE


  2 / 16499 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27778378
[Au] Autor:Bragg EM; Fairless EA; Liu S; Briggs F
[Ad] Endereço:Physiology & Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.
[Ti] Título:Morphology of visual sector thalamic reticular neurons in the macaque monkey suggests retinotopically specialized, parallel stream-mixed input to the lateral geniculate nucleus.
[So] Source:J Comp Neurol;525(5):1273-1290, 2017 Apr 01.
[Is] ISSN:1096-9861
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The thalamic reticular nucleus (TRN) is a unique brain structure at the interface between the thalamus and the cortex. Because the TRN receives bottom-up sensory input and top-down cortical input, it could serve as an integration hub for sensory and cognitive signals. Functional evidence supports broad roles for the TRN in arousal, attention, and sensory selection. How specific circuits connecting the TRN with sensory thalamic structures implement these functions is not known. The structural organization and function of the TRN is particularly interesting in the context of highly organized sensory systems, such as the primate visual system, where neurons in the retina and dorsal lateral geniculate nucleus of the thalamus (dLGN) are morphologically and physiologically distinct and also specialized for processing particular features of the visual environment. To gain insight into the functional relationship between the visual sector of the TRN and the dLGN, we reconstructed a large number of TRN neurons that were retrogradely labeled following injections of rabies virus expressing enhanced green fluorescent protein (EGFP) into the dLGN. An independent cluster analysis, based on 10 morphological metrics measured for each reconstructed neuron, revealed three clusters of TRN neurons that differed in cell body shape and size, dendritic arborization patterns, and medial-lateral position within the TRN. TRN dendritic and axonal morphologies are inconsistent with visual stream-specific projections to the dLGN. Instead, TRN neuronal organization could facilitate transmission of global arousal and/or cognitive signals to the dLGN with retinotopic precision that preserves specialized processing of foveal versus peripheral visual information. J. Comp. Neurol. 525:1273-1290, 2017. © 2016 Wiley Periodicals, Inc.
[Mh] Termos MeSH primário: Corpos Geniculados/citologia
Neurônios/citologia
Núcleos Talâmicos/citologia
Vias Visuais/citologia
[Mh] Termos MeSH secundário: Animais
Imagem Tridimensional
Macaca
Masculino
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1709
[Cu] Atualização por classe:180309
[Lr] Data última revisão:
180309
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161026
[St] Status:MEDLINE
[do] DOI:10.1002/cne.24134


  3 / 16499 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27777172
[Au] Autor:Eickenberg M; Gramfort A; Varoquaux G; Thirion B
[Ad] Endereço:Inria Parietal Team, Inria Saclay, France; Neurospin, I2BM, DSV, CEA Saclay, France; DATA Team, Informatics Department, Ecole normale supérieure, Paris, France. Electronic address: michael.eickenberg@nsup.org.
[Ti] Título:Seeing it all: Convolutional network layers map the function of the human visual system.
[So] Source:Neuroimage;152:184-194, 2017 May 15.
[Is] ISSN:1095-9572
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Convolutional networks used for computer vision represent candidate models for the computations performed in mammalian visual systems. We use them as a detailed model of human brain activity during the viewing of natural images by constructing predictive models based on their different layers and BOLD fMRI activations. Analyzing the predictive performance across layers yields characteristic fingerprints for each visual brain region: early visual areas are better described by lower level convolutional net layers and later visual areas by higher level net layers, exhibiting a progression across ventral and dorsal streams. Our predictive model generalizes beyond brain responses to natural images. We illustrate this on two experiments, namely retinotopy and face-place oppositions, by synthesizing brain activity and performing classical brain mapping upon it. The synthesis recovers the activations observed in the corresponding fMRI studies, showing that this deep encoding model captures representations of brain function that are universal across experimental paradigms.
[Mh] Termos MeSH primário: Mapeamento Encefálico/métodos
Modelos Neurológicos
Córtex Visual/fisiologia
Percepção Visual/fisiologia
[Mh] Termos MeSH secundário: Seres Humanos
Processamento de Imagem Assistida por Computador
Imagem por Ressonância Magnética
Estimulação Luminosa
Processamento de Sinais Assistido por Computador
Vias Visuais/fisiologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180308
[Lr] Data última revisão:
180308
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161026
[St] Status:MEDLINE


  4 / 16499 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28451634
[Au] Autor:Majima K; Sukhanov P; Horikawa T; Kamitani Y
[Ad] Endereço:Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
[Ti] Título:Position Information Encoded by Population Activity in Hierarchical Visual Areas.
[So] Source:eNeuro;4(2), 2017 Mar-Apr.
[Is] ISSN:2373-2822
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Neurons in high-level visual areas respond to more complex visual features with broader receptive fields (RFs) compared to those in low-level visual areas. Thus, high-level visual areas are generally considered to carry less information regarding the position of seen objects in the visual field. However, larger RFs may not imply loss of position information at the population level. Here, we evaluated how accurately the position of a seen object could be predicted (decoded) from activity patterns in each of six representative visual areas with different RF sizes [V1-V4, lateral occipital complex (LOC), and fusiform face area (FFA)]. We collected functional magnetic resonance imaging (fMRI) responses while human subjects viewed a ball randomly moving in a two-dimensional field. To estimate population RF sizes of individual fMRI voxels, RF models were fitted for individual voxels in each brain area. The voxels in higher visual areas showed larger estimated RFs than those in lower visual areas. Then, the ball's position in a separate session was predicted by maximum likelihood estimation using the RF models of individual voxels. We also tested a model-free multivoxel regression (support vector regression, SVR) to predict the position. We found that regardless of the difference in RF size, all visual areas showed similar prediction accuracies, especially on the horizontal dimension. Higher areas showed slightly lower accuracies on the vertical dimension, which appears to be attributed to the narrower spatial distributions of the RF centers. The results suggest that much position information is preserved in population activity through the hierarchical visual pathway regardless of RF sizes and is potentially available in later processing for recognition and behavior.
[Mh] Termos MeSH primário: Percepção Espacial/fisiologia
Córtex Visual/fisiologia
Percepção Visual/fisiologia
[Mh] Termos MeSH secundário: Adulto
Mapeamento Encefálico
Feminino
Seres Humanos
Imagem por Ressonância Magnética
Masculino
Campos Visuais
Vias Visuais/fisiologia
Adulto Jovem
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180228
[Lr] Data última revisão:
180228
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170429
[St] Status:MEDLINE


  5 / 16499 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28467907
[Au] Autor:Pietri T; Romano SA; Pérez-Schuster V; Boulanger-Weill J; Candat V; Sumbre G
[Ad] Endereço:IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France.
[Ti] Título:The Emergence of the Spatial Structure of Tectal Spontaneous Activity Is Independent of Visual Inputs.
[So] Source:Cell Rep;19(5):939-948, 2017 May 02.
[Is] ISSN:2211-1247
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The brain is spontaneously active, even in the absence of sensory stimulation. The functionally mature zebrafish optic tectum shows spontaneous activity patterns reflecting a functional connectivity adapted for the circuit's functional role and predictive of behavior. However, neither the emergence of these patterns during development nor the role of retinal inputs in their maturation has been characterized. Using two-photon calcium imaging, we analyzed spontaneous activity in intact and enucleated zebrafish larvae throughout tectum development. At the onset of retinotectal connections, intact larvae showed major changes in the spatiotemporal structure of spontaneous activity. Although the absence of retinal inputs had a significant impact on the development of the temporal structure, the tectum was still capable of developing a spatial structure associated with the circuit's functional roles and predictive of behavior. We conclude that neither visual experience nor intrinsic retinal activity is essential for the emergence of a spatially structured functional circuit.
[Mh] Termos MeSH primário: Retina/fisiologia
Colículos Superiores/fisiologia
Percepção Visual
[Mh] Termos MeSH secundário: Animais
Sinalização do Cálcio
Estimulação Luminosa
Retina/crescimento & desenvolvimento
Retina/metabolismo
Colículos Superiores/crescimento & desenvolvimento
Vias Visuais/crescimento & desenvolvimento
Vias Visuais/fisiologia
Peixe-Zebra
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180213
[Lr] Data última revisão:
180213
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170504
[St] Status:MEDLINE


  6 / 16499 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28471714
[Au] Autor:Angelucci A; Bijanzadeh M; Nurminen L; Federer F; Merlin S; Bressloff PC
[Ad] Endereço:Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, Utah 84132; email: alessandra.angelucci@hsc.utah.edu , ma.bijanzadeh@gmail.com , larsnurminen@gmail.com , sammerlin7@gmail.com , freddieneuron@gmail.com.
[Ti] Título:Circuits and Mechanisms for Surround Modulation in Visual Cortex.
[So] Source:Annu Rev Neurosci;40:425-451, 2017 Jul 25.
[Is] ISSN:1545-4126
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Surround modulation (SM) is a fundamental property of sensory neurons in many species and sensory modalities. SM is the ability of stimuli in the surround of a neuron's receptive field (RF) to modulate (typically suppress) the neuron's response to stimuli simultaneously presented inside the RF, a property thought to underlie optimal coding of sensory information and important perceptual functions. Understanding the circuit and mechanisms for SM can reveal fundamental principles of computations in sensory cortices, from mouse to human. Current debate is centered over whether feedforward or intracortical circuits generate SM, and whether this results from increased inhibition or reduced excitation. Here we present a working hypothesis, based on theoretical and experimental evidence, that SM results from feedforward, horizontal, and feedback interactions with local recurrent connections, via synaptic mechanisms involving both increased inhibition and reduced recurrent excitation. In particular, strong and balanced recurrent excitatory and inhibitory circuits play a crucial role in the computation of SM.
[Mh] Termos MeSH primário: Neurônios/fisiologia
Córtex Visual/fisiologia
Vias Visuais/fisiologia
Percepção Visual/fisiologia
[Mh] Termos MeSH secundário: Animais
Retroalimentação Fisiológica/fisiologia
Modelos Neurológicos
Estimulação Luminosa
Campos Visuais/fisiologia
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180207
[Lr] Data última revisão:
180207
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170505
[St] Status:MEDLINE
[do] DOI:10.1146/annurev-neuro-072116-031418


  7 / 16499 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28460185
[Au] Autor:Zhang C; Kolodkin AL; Wong RO; James RE
[Ad] Endereço:Department of Biological Structure, University of Washington, Seattle, Washington 98195; email: zhangc29@uw.edu , wongr2@uw.edu.
[Ti] Título:Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain.
[So] Source:Annu Rev Neurosci;40:395-424, 2017 Jul 25.
[Is] ISSN:1545-4126
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The retina is a tremendously complex image processor, containing numerous cell types that form microcircuits encoding different aspects of the visual scene. Each microcircuit exhibits a distinct pattern of synaptic connectivity. The developmental mechanisms responsible for this patterning are just beginning to be revealed. Furthermore, signals processed by different retinal circuits are relayed to specific, often distinct, brain regions. Thus, much work has focused on understanding the mechanisms that wire retinal axonal projections to their appropriate central targets. Here, we highlight recently discovered cellular and molecular mechanisms that together shape stereotypic wiring patterns along the visual pathway, from within the retina to the brain. Although some mechanisms are common across circuits, others play unconventional and circuit-specific roles. Indeed, the highly organized connectivity of the visual system has greatly facilitated the discovery of novel mechanisms that establish precise synaptic connections within the nervous system.
[Mh] Termos MeSH primário: Encéfalo/fisiologia
Neurônios/fisiologia
Retina/fisiologia
Vias Visuais/fisiologia
[Mh] Termos MeSH secundário: Animais
Encéfalo/metabolismo
Seres Humanos
Neurônios/metabolismo
Estimulação Luminosa
Retina/metabolismo
Vias Visuais/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180207
[Lr] Data última revisão:
180207
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170502
[St] Status:MEDLINE
[do] DOI:10.1146/annurev-neuro-072116-031607


  8 / 16499 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28746815
[Au] Autor:Glickfeld LL; Olsen SR
[Ad] Endereço:Department of Neurobiology, Duke University, Durham, North Carolina 27710; email: glickfeld@neuro.duke.edu.
[Ti] Título:Higher-Order Areas of the Mouse Visual Cortex.
[So] Source:Annu Rev Vis Sci;3:251-273, 2017 Sep 15.
[Is] ISSN:2374-4650
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The brain has evolved to transform sensory information in the environment into neural representations that can be used for perception and action. Higher-order sensory cortical areas, with their increasingly complex receptive fields and integrative properties, are thought to be critical nodes for this function. This is especially true in the primate visual cortex, in which functionally specialized areas are engaged in parallel streams to support diverse computations. Recent anatomical and physiological studies of the mouse visual cortex have revealed a similarly complex network of specialized higher-order areas. This structure provides a useful model for determining the synaptic and circuit mechanisms through which information is transformed across distinct processing stages. In this review, we summarize the current knowledge on the layout, connectivity, and functional properties of the higher visual areas in the mouse. In addition, we speculate on the contribution of these areas to perception and action, and how knowledge of the mouse visual system can inform us about the principles that govern information processing in integrated networks.
[Mh] Termos MeSH primário: Comportamento Animal/fisiologia
Córtex Visual/fisiologia
Vias Visuais/fisiologia
Percepção Visual/fisiologia
[Mh] Termos MeSH secundário: Animais
Mapeamento Encefálico
Conectoma
Camundongos
Córtex Visual/anatomia & histologia
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180202
[Lr] Data última revisão:
180202
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170727
[St] Status:MEDLINE
[do] DOI:10.1146/annurev-vision-102016-061331


  9 / 16499 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29281631
[Au] Autor:Li J; Lindemann JP; Egelhaaf M
[Ad] Endereço:Department of Neurobiology and Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany.
[Ti] Título:Local motion adaptation enhances the representation of spatial structure at EMD arrays.
[So] Source:PLoS Comput Biol;13(12):e1005919, 2017 12.
[Is] ISSN:1553-7358
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Neuronal representation and extraction of spatial information are essential for behavioral control. For flying insects, a plausible way to gain spatial information is to exploit distance-dependent optic flow that is generated during translational self-motion. Optic flow is computed by arrays of local motion detectors retinotopically arranged in the second neuropile layer of the insect visual system. These motion detectors have adaptive response characteristics, i.e. their responses to motion with a constant or only slowly changing velocity decrease, while their sensitivity to rapid velocity changes is maintained or even increases. We analyzed by a modeling approach how motion adaptation affects signal representation at the output of arrays of motion detectors during simulated flight in artificial and natural 3D environments. We focused on translational flight, because spatial information is only contained in the optic flow induced by translational locomotion. Indeed, flies, bees and other insects segregate their flight into relatively long intersaccadic translational flight sections interspersed with brief and rapid saccadic turns, presumably to maximize periods of translation (80% of the flight). With a novel adaptive model of the insect visual motion pathway we could show that the motion detector responses to background structures of cluttered environments are largely attenuated as a consequence of motion adaptation, while responses to foreground objects stay constant or even increase. This conclusion even holds under the dynamic flight conditions of insects.
[Mh] Termos MeSH primário: Voo Animal/fisiologia
Insetos/fisiologia
Percepção de Movimento/fisiologia
[Mh] Termos MeSH secundário: Adaptação Fisiológica
Animais
Biologia Computacional
Modelos Biológicos
Modelos Neurológicos
Movimento (Física)
Fluxo Óptico/fisiologia
Estimulação Luminosa
Movimentos Sacádicos/fisiologia
Processamento Espacial/fisiologia
Vias Visuais/fisiologia
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180128
[Lr] Data última revisão:
180128
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171228
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pcbi.1005919


  10 / 16499 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29240769
[Au] Autor:Muir DR; Molina-Luna P; Roth MM; Helmchen F; Kampa BM
[Ad] Endereço:Biozentrum, University of Basel, Basel, Switzerland.
[Ti] Título:Specific excitatory connectivity for feature integration in mouse primary visual cortex.
[So] Source:PLoS Comput Biol;13(12):e1005888, 2017 12.
[Is] ISSN:1553-7358
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Local excitatory connections in mouse primary visual cortex (V1) are stronger and more prevalent between neurons that share similar functional response features. However, the details of how functional rules for local connectivity shape neuronal responses in V1 remain unknown. We hypothesised that complex responses to visual stimuli may arise as a consequence of rules for selective excitatory connectivity within the local network in the superficial layers of mouse V1. In mouse V1 many neurons respond to overlapping grating stimuli (plaid stimuli) with highly selective and facilitatory responses, which are not simply predicted by responses to single gratings presented alone. This complexity is surprising, since excitatory neurons in V1 are considered to be mainly tuned to single preferred orientations. Here we examined the consequences for visual processing of two alternative connectivity schemes: in the first case, local connections are aligned with visual properties inherited from feedforward input (a 'like-to-like' scheme specifically connecting neurons that share similar preferred orientations); in the second case, local connections group neurons into excitatory subnetworks that combine and amplify multiple feedforward visual properties (a 'feature binding' scheme). By comparing predictions from large scale computational models with in vivo recordings of visual representations in mouse V1, we found that responses to plaid stimuli were best explained by assuming feature binding connectivity. Unlike under the like-to-like scheme, selective amplification within feature-binding excitatory subnetworks replicated experimentally observed facilitatory responses to plaid stimuli; explained selective plaid responses not predicted by grating selectivity; and was consistent with broad anatomical selectivity observed in mouse V1. Our results show that visual feature binding can occur through local recurrent mechanisms without requiring feedforward convergence, and that such a mechanism is consistent with visual responses and cortical anatomy in mouse V1.
[Mh] Termos MeSH primário: Modelos Neurológicos
Córtex Visual/fisiologia
[Mh] Termos MeSH secundário: Animais
Sinalização do Cálcio/fisiologia
Biologia Computacional
Feminino
Masculino
Camundongos
Camundongos Endogâmicos C57BL
Rede Nervosa/fisiologia
Neurônios/fisiologia
Orientação/fisiologia
Estimulação Luminosa
Sinapses/fisiologia
Córtex Visual/citologia
Vias Visuais/citologia
Vias Visuais/fisiologia
Percepção Visual/fisiologia
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180123
[Lr] Data última revisão:
180123
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171215
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pcbi.1005888



página 1 de 1650 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde