Base de dados : MEDLINE
Pesquisa : A08.850 [Categoria DeCS]
Referências encontradas : 49548 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 4955 ir para página                         

  1 / 49548 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28466071
[Au] Autor:Walton JC; McNeill JK; Oliver KA; Albers HE
[Ad] Endereço:Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303.
[Ti] Título:Temporal Regulation of GABA Receptor Subunit Expression: Role in Synaptic and Extrasynaptic Communication in the Suprachiasmatic Nucleus.
[So] Source:eNeuro;4(2), 2017 Mar-Apr.
[Is] ISSN:2373-2822
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Recent molecular studies suggest that the expression levels of δ and γ2 GABA receptor (GABA R) subunits regulate the balance between synaptic and extrasynaptic GABA neurotransmission in multiple brain regions. We investigated the expression of GABA δ and GABA γ2 and the functional significance of a change in balance between these subunits in a robust local GABA network contained within the suprachiasmatic nucleus of the hypothalamus (SCN). Muscimol, which can activate both synaptic and extrasynaptic GABA Rs, injected into the SCN during the day phase advanced the circadian pacemaker, whereas injection of the extrasynaptic GABA superagonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP) had no effect on circadian phase. In contrast, injection of either THIP or muscimol during the night was sufficient to block the phase shifting effects of light. Gene expression analysis of the whole SCN revealed different temporal patterns in GABA δ and GABA γ2 mRNA expression. When examined across all subregions of the SCN, quantitative immunohistochemical analysis found no significant variations in GABA δ protein immunoreactivity (IR) but did find significant variations in GABA γ2 protein-IR in hamsters housed in either LD cycles or in constant darkness. Remarkably, significant interactions in the ratio of GABA δ:GABA γ2 subunits between lighting condition and circadian phase occurred only within one highly discrete anatomical area of the SCN; a region that functions as the input for lighting information from the retina. Taken together, these data support the hypothesis that the balance between synaptic and extrasynaptic GABA Rs determines the functional response to GABA, and that this balance is differentially regulated in a region-specific manner.
[Mh] Termos MeSH primário: Receptores de GABA-A/metabolismo
Núcleo Supraquiasmático/metabolismo
[Mh] Termos MeSH secundário: Animais
Ritmo Circadiano/efeitos dos fármacos
Ritmo Circadiano/fisiologia
Agonistas GABAérgicos/farmacologia
Masculino
Receptores de GABA-A/efeitos dos fármacos
Núcleo Supraquiasmático/efeitos dos fármacos
Sinapses/efeitos dos fármacos
Sinapses/metabolismo
Transmissão Sináptica/efeitos dos fármacos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (GABA Agonists); 0 (Receptors, GABA-A)
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180308
[Lr] Data última revisão:
180308
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170504
[St] Status:MEDLINE


  2 / 49548 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28466070
[Au] Autor:Sabbah S; Berg D; Papendorp C; Briggman KL; Berson DM
[Ad] Endereço:Department of Neuroscience, Brown University, Providence, RI 02912.
[Ti] Título:A Cre Mouse Line for Probing Irradiance- and Direction-Encoding Retinal Networks.
[So] Source:eNeuro;4(2), 2017 Mar-Apr.
[Is] ISSN:2373-2822
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Cell type-specific Cre driver lines have revolutionized the analysis of retinal cell types and circuits. We show that the transgenic mouse Rbp4-Cre selectively labels several retinal neuronal types relevant to the encoding of absolute light intensity (irradiance) and visual motion. In the ganglion cell layer (GCL), most marked cells are wide-field spiking polyaxonal amacrine cells (ACs) with sustained irradiance-encoding ON responses that persist during chemical synaptic blockade. Their arbors spread about 1 mm across the retina and are restricted to the inner half of the ON sublamina of the inner plexiform layer (IPL). There, they costratify with dendrites of M2 intrinsically photosensitive retinal ganglion cells (ipRGCs), to which they are tracer coupled. We propose that synaptically driven and intrinsic photocurrents of M2 cells pass through gap junctions to drive AC light responses. Also marked in this mouse are two types of RGCs. R-cells have a bistratified dendritic arbor, weak directional tuning, and irradiance-encoding ON responses. However, they also receive excitatory OFF input, revealed during ON-channel blockade. Serial blockface electron microscopic (SBEM) reconstruction confirms OFF bipolar input, and reveals that some OFF input derives from a novel type of OFF bipolar cell (BC). R-cells innervate specific layers of the dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC). The other marked RGC type (RDS) is bistratified, transient, and ON-OFF direction selective (DS). It apparently innervates the nucleus of the optic tract (NOT). The Rbp4-Cre mouse will be valuable for targeting these cell types for further study and for selectively manipulating them for circuit analysis.
[Mh] Termos MeSH primário: Rede Nervosa/fisiologia
Retina/fisiologia
Sinapses/fisiologia
Vias Visuais/fisiologia
[Mh] Termos MeSH secundário: Animais
Dendritos/metabolismo
Camundongos Transgênicos
Microscopia Eletrônica
Células Ganglionares da Retina/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180308
[Lr] Data última revisão:
180308
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170504
[St] Status:MEDLINE


  3 / 49548 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28462393
[Au] Autor:Pathak D; Berthet A; Bendor JT; Yu K; Sellnow RC; Orr AL; Nguyen MK; Edwards RH; Manfredsson FP; Nakamura K
[Ad] Endereço:Gladstone Institute of Neurological Disease, San Francisco, CA 94158.
[Ti] Título:Loss of α-Synuclein Does Not Affect Mitochondrial Bioenergetics in Rodent Neurons.
[So] Source:eNeuro;4(2), 2017 Mar-Apr.
[Is] ISSN:2373-2822
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Increased α-synuclein (αsyn) and mitochondrial dysfunction play central roles in the pathogenesis of Parkinson's disease (PD), and lowering αsyn is under intensive investigation as a therapeutic strategy for PD. Increased αsyn levels disrupt mitochondria and impair respiration, while reduced αsyn protects against mitochondrial toxins, suggesting that interactions between αsyn and mitochondria influences the pathologic and physiologic functions of αsyn. However, we do not know if αsyn affects normal mitochondrial function or if lowering αsyn levels impacts bioenergetic function, especially at the nerve terminal where αsyn is enriched. To determine if αsyn is required for normal mitochondrial function in neurons, we comprehensively evaluated how lowering αsyn affects mitochondrial function. We found that αsyn knockout (KO) does not affect the respiration of cultured hippocampal neurons or cortical and dopaminergic synaptosomes, and that neither loss of αsyn nor all three (α, ß and γ) syn isoforms decreased mitochondria-derived ATP levels at the synapse. Similarly, neither αsyn KO nor knockdown altered the capacity of synaptic mitochondria to meet the energy requirements of synaptic vesicle cycling or influenced the localization of mitochondria to dopamine (DA) synapses . Finally, αsyn KO did not affect overall energy metabolism in mice assessed with a Comprehensive Lab Animal Monitoring System. These studies suggest either that αsyn has little or no significant physiological effect on mitochondrial bioenergetic function, or that any such functions are fully compensated for when lost. These results implicate that αsyn levels can be reduced in neurons without impairing (or improving) mitochondrial bioenergetics or distribution.
[Mh] Termos MeSH primário: Mitocôndrias/metabolismo
Neurônios/metabolismo
Sinapses/metabolismo
alfa-Sinucleína/metabolismo
[Mh] Termos MeSH secundário: Animais
Dopamina/metabolismo
Hipocampo/metabolismo
Camundongos Knockout
Doença de Parkinson/metabolismo
alfa-Sinucleína/deficiência
alfa-Sinucleína/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Snca protein, mouse); 0 (alpha-Synuclein); VTD58H1Z2X (Dopamine)
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180308
[Lr] Data última revisão:
180308
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170503
[St] Status:MEDLINE


  4 / 49548 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29348575
[Au] Autor:Neef J; Urban NT; Ohn TL; Frank T; Jean P; Hell SW; Willig KI; Moser T
[Ad] Endereço:Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099, Göttingen, Germany.
[Ti] Título:Quantitative optical nanophysiology of Ca signaling at inner hair cell active zones.
[So] Source:Nat Commun;9(1):290, 2018 01 18.
[Is] ISSN:2041-1723
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Ca influx triggers the release of synaptic vesicles at the presynaptic active zone (AZ). A quantitative characterization of presynaptic Ca signaling is critical for understanding synaptic transmission. However, this has remained challenging to establish at the required resolution. Here, we employ confocal and stimulated emission depletion (STED) microscopy to quantify the number (20-330) and arrangement (mostly linear 70 nm × 100-600 nm clusters) of Ca channels at AZs of mouse cochlear inner hair cells (IHCs). Establishing STED Ca imaging, we analyze presynaptic Ca signals at the nanometer scale and find confined elongated Ca domains at normal IHC AZs, whereas Ca domains are spatially spread out at the AZs of bassoon-deficient IHCs. Performing 2D-STED fluorescence lifetime analysis, we arrive at estimates of the Ca concentrations at stimulated IHC AZs of on average 25 µM. We propose that IHCs form bassoon-dependent presynaptic Ca -channel clusters of similar density but scalable length, thereby varying the number of Ca channels amongst individual AZs.
[Mh] Termos MeSH primário: Sinalização do Cálcio/fisiologia
Células Ciliadas Auditivas Internas/fisiologia
Microscopia/métodos
Nanotecnologia/métodos
[Mh] Termos MeSH secundário: Algoritmos
Animais
Cálcio/metabolismo
Canais de Cálcio Tipo L/fisiologia
Células Ciliadas Auditivas Internas/metabolismo
Camundongos Endogâmicos C57BL
Camundongos Knockout
Microscopia Confocal
Modelos Neurológicos
Proteínas do Tecido Nervoso/genética
Proteínas do Tecido Nervoso/fisiologia
Sinapses/metabolismo
Sinapses/fisiologia
Transmissão Sináptica/genética
Transmissão Sináptica/fisiologia
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Bsn protein, mouse); 0 (Calcium Channels, L-Type); 0 (Nerve Tissue Proteins); SY7Q814VUP (Calcium)
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180306
[Lr] Data última revisão:
180306
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180120
[St] Status:MEDLINE
[do] DOI:10.1038/s41467-017-02612-y


  5 / 49548 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29348429
[Au] Autor:Goto-Ito S; Yamagata A; Sato Y; Uemura T; Shiroshima T; Maeda A; Imai A; Mori H; Yoshida T; Fukai S
[Ad] Endereço:Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
[Ti] Título:Structural basis of trans-synaptic interactions between PTPδ and SALMs for inducing synapse formation.
[So] Source:Nat Commun;9(1):269, 2018 01 18.
[Is] ISSN:2041-1723
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Synapse formation is triggered by trans-synaptic interactions of cell adhesion molecules, termed synaptic organizers. Three members of type-II receptor protein tyrosine phosphatases (classified as type-IIa RPTPs; PTPδ, PTPσ and LAR) are known as presynaptic organizers. Synaptic adhesion-like molecules (SALMs) have recently emerged as a family of postsynaptic organizers. Although all five SALM isoforms can bind to the type-IIa RPTPs, only SALM3 and SALM5 reportedly have synaptogenic activities depending on their binding. Here, we report the crystal structures of apo-SALM5, and PTPδ-SALM2 and PTPδ-SALM5 complexes. The leucine-rich repeat (LRR) domains of SALMs interact with the second immunoglobulin-like (Ig) domain of PTPδ, whereas the Ig domains of SALMs interact with both the second and third Ig domains of PTPδ. Unexpectedly, the structures exhibit the LRR-mediated 2:2 complex. Our synaptogenic co-culture assay using site-directed SALM5 mutants demonstrates that presynaptic differentiation induced by PTPδ-SALM5 requires the dimeric property of SALM5.
[Mh] Termos MeSH primário: Moléculas de Adesão Celular Neuronais/química
Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química
Sinapses/metabolismo
Transmissão Sináptica
[Mh] Termos MeSH secundário: Animais
Moléculas de Adesão Celular Neuronais/genética
Moléculas de Adesão Celular Neuronais/metabolismo
Cristalografia por Raios X
Células HEK293
Seres Humanos
Modelos Moleculares
Mutação
Ligação Proteica
Domínios Proteicos
Isoformas de Proteínas/química
Isoformas de Proteínas/genética
Isoformas de Proteínas/metabolismo
Multimerização Proteica
Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética
Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Cell Adhesion Molecules, Neuronal); 0 (Protein Isoforms); 0 (SALM5 protein, human); EC 3.1.3.48 (Receptor-Like Protein Tyrosine Phosphatases, Class 2)
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180305
[Lr] Data última revisão:
180305
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180120
[St] Status:MEDLINE
[do] DOI:10.1038/s41467-017-02417-z


  6 / 49548 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28465084
[Au] Autor:Jensen TP; Zheng K; Tyurikova O; Reynolds JP; Rusakov DA
[Ad] Endereço:UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK. Electronic address: t.jensen@ucl.ac.uk.
[Ti] Título:Monitoring single-synapse glutamate release and presynaptic calcium concentration in organised brain tissue.
[So] Source:Cell Calcium;64:102-108, 2017 Jun.
[Is] ISSN:1532-1991
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:Brain function relies in large part on Ca -dependent release of the excitatory neurotransmitter glutamate from neuronal axons. Establishing the causal relationship between presynaptic Ca dynamics and probabilistic glutamate release is therefore a fundamental quest across neurosciences. Its progress, however, has hitherto depended primarily on the exploration of either cultured nerve cells or giant central synapses accessible to direct experimental probing in situ. Here we show that combining patch-clamp with time-resolved imaging of Ca -sensitive fluorescence lifetime of Oregon Green BAPTA-1 (Tornado-FLIM) enables readout of single spike-evoked presynaptic Ca concentration dynamics, with nanomolar sensitivity, in individual neuronal axons in acute brain slices. In parallel, intensity Tornado imaging of a locally expressed extracellular optical glutamate sensor iGluSnFr provides direct monitoring of single-quantum, single-synapse glutamate releases in situ. These two methods pave the way for simultaneous registration of presynaptic Ca dynamics and transmitter release in an intact brain at the level of individual synapses.
[Mh] Termos MeSH primário: Encéfalo/metabolismo
Cálcio/metabolismo
Ácido Glutâmico/metabolismo
Terminações Pré-Sinápticas/metabolismo
Sinapses/metabolismo
[Mh] Termos MeSH secundário: Potenciais de Ação/fisiologia
Compostos de Anilina/metabolismo
Animais
Axônios/metabolismo
Fluoresceínas/metabolismo
Hipocampo/metabolismo
Camundongos Endogâmicos C57BL
Ratos Sprague-Dawley
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Aniline Compounds); 0 (Fluoresceins); 0 (Oregon green 488 BAPTA-1); 3KX376GY7L (Glutamic Acid); SY7Q814VUP (Calcium)
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180302
[Lr] Data última revisão:
180302
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170504
[St] Status:MEDLINE


  7 / 49548 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28453998
[Au] Autor:Timofeev I; Chauvette S
[Ad] Endereço:Department of Psychiatry and Neuroscience, Université Laval Québec, QC G1V 0A6, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601, de la Canardière Québec, QC G1J 2G3, Canada. Electronic address: Igor.Timofeev@fmed.ulaval.ca.
[Ti] Título:Sleep slow oscillation and plasticity.
[So] Source:Curr Opin Neurobiol;44:116-126, 2017 Jun.
[Is] ISSN:1873-6882
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:It is well documented that sleep contributes to memory consolidation and it is also accepted that long-term synaptic plasticity plays a critical role in memory formation. The mechanisms of this sleep-dependent memory formation are unclear. Two main hypotheses are proposed. According to the first one, synapses are potentiated during wake; and during sleep they are scaled back to become available for the learning tasks in the next day. The other hypothesis is that sleep slow oscillations potentiate synapses that were depressed due to persistent activities during the previous day and that potentiation provides physiological basis for memory consolidation. The objective of this review is to group information on whether cortical synapses are up-scaled or down-scaled during sleep. We conclude that the majority of cortical synapses are up-regulated by sleep slow oscillation.
[Mh] Termos MeSH primário: Plasticidade Neuronal/fisiologia
Sono/fisiologia
[Mh] Termos MeSH secundário: Seres Humanos
Memória/fisiologia
Sinapses/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180301
[Lr] Data última revisão:
180301
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170429
[St] Status:MEDLINE


  8 / 49548 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28460365
[Au] Autor:Krueger-Burg D; Papadopoulos T; Brose N
[Ad] Endereço:Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany. Electronic address: krueger@em.mpg.de.
[Ti] Título:Organizers of inhibitory synapses come of age.
[So] Source:Curr Opin Neurobiol;45:66-77, 2017 Aug.
[Is] ISSN:1873-6882
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:While the postsynaptic density of excitatory synapses is known to encompass a highly complex molecular machinery, the equivalent organizational structure of inhibitory synapses has long remained largely undefined. In recent years, however, substantial progress has been made towards identifying the full complement of organizational proteins present at inhibitory synapses, including submembranous scaffolds, intracellular signaling proteins, transsynaptic adhesion proteins, and secreted factors. Here, we summarize these findings and discuss future challenges in assigning synapse-specific functions to the newly discovered catalog of proteins, an endeavor that will depend heavily on newly developed technologies such as proximity biotinylation. Further advances are made all the more essential by growing evidence that links inhibitory synapses to psychiatric and neurological disorders.
[Mh] Termos MeSH primário: Sinapses/fisiologia
[Mh] Termos MeSH secundário: Seres Humanos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
Proteínas do Tecido Nervoso/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Intracellular Signaling Peptides and Proteins); 0 (Nerve Tissue Proteins)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180228
[Lr] Data última revisão:
180228
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170502
[St] Status:MEDLINE


  9 / 49548 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29343769
[Au] Autor:Chen X; Aslam M; Gollisch T; Allen K; von Engelhardt J
[Ad] Endereço:Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55128, Germany.
[Ti] Título:CKAMP44 modulates integration of visual inputs in the lateral geniculate nucleus.
[So] Source:Nat Commun;9(1):261, 2018 01 17.
[Is] ISSN:2041-1723
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Relay neurons in the dorsal lateral geniculate nucleus (dLGN) receive excitatory inputs from retinal ganglion cells (RGCs). Retinogeniculate synapses are characterized by a prominent short-term depression of AMPA receptor (AMPAR)-mediated currents, but the underlying mechanisms and its function for visual integration are not known. Here we identify CKAMP44 as a crucial auxiliary subunit of AMPARs in dLGN relay neurons, where it increases AMPAR-mediated current amplitudes and modulates gating of AMPARs. Importantly, CKAMP44 is responsible for the distinctive short-term depression in retinogeniculate synapses by reducing the rate of recovery from desensitization of AMPARs. Genetic deletion of CKAMP44 strongly reduces synaptic short-term depression, which leads to increased spike probability of relay neurons when activated with high-frequency inputs from retinogeniculate synapses. Finally, in vivo recordings reveal augmented ON- and OFF-responses of dLGN neurons in CKAMP44 knockout (CKAMP44 ) mice, demonstrating the importance of CKAMP44 for modulating synaptic short-term depression and visual input integration.
[Mh] Termos MeSH primário: Corpos Geniculados/fisiologia
Proteínas do Tecido Nervoso/metabolismo
Neurônios/fisiologia
Transmissão Sináptica/fisiologia
[Mh] Termos MeSH secundário: Animais
Eletrorretinografia
Potenciais Pós-Sinápticos Excitadores/fisiologia
Feminino
Corpos Geniculados/citologia
Corpos Geniculados/metabolismo
Camundongos Endogâmicos C57BL
Camundongos Knockout
Proteínas do Tecido Nervoso/genética
Neurônios/metabolismo
Estimulação Luminosa
Receptores de AMPA/metabolismo
Retina/citologia
Retina/metabolismo
Retina/fisiologia
Sinapses/fisiologia
Transmissão Sináptica/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (CKAMP44 protein, mouse); 0 (Nerve Tissue Proteins); 0 (Receptors, AMPA)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180227
[Lr] Data última revisão:
180227
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180119
[St] Status:MEDLINE
[do] DOI:10.1038/s41467-017-02415-1


  10 / 49548 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29228003
[Au] Autor:Crawley O; Giles AC; Desbois M; Kashyap S; Birnbaum R; Grill B
[Ad] Endereço:Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America.
[Ti] Título:A MIG-15/JNK-1 MAP kinase cascade opposes RPM-1 signaling in synapse formation and learning.
[So] Source:PLoS Genet;13(12):e1007095, 2017 12.
[Is] ISSN:1553-7404
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The Pam/Highwire/RPM-1 (PHR) proteins are conserved intracellular signaling hubs that regulate synapse formation and axon termination. The C. elegans PHR protein, called RPM-1, acts as a ubiquitin ligase to inhibit the DLK-1 and MLK-1 MAP kinase pathways. We have identified several kinases that are likely to form a new MAP kinase pathway that suppresses synapse formation defects, but not axon termination defects, in the mechanosensory neurons of rpm-1 mutants. This pathway includes: MIG-15 (MAP4K), NSY-1 (MAP3K), JKK-1 (MAP2K) and JNK-1 (MAPK). Transgenic overexpression of kinases in the MIG-15/JNK-1 pathway is sufficient to impair synapse formation in wild-type animals. The MIG-15/JNK-1 pathway functions cell autonomously in the mechanosensory neurons, and these kinases localize to presynaptic terminals providing further evidence of a role in synapse development. Loss of MIG-15/JNK-1 signaling also suppresses defects in habituation to repeated mechanical stimuli in rpm-1 mutants, a behavioral deficit that is likely to arise from impaired glutamatergic synapse formation. Interestingly, habituation results are consistent with the MIG-15/JNK-1 pathway functioning as a parallel opposing pathway to RPM-1. These findings indicate the MIG-15/JNK-1 pathway can restrict both glutamatergic synapse formation and short-term learning.
[Mh] Termos MeSH primário: Proteínas de Caenorhabditis elegans/metabolismo
Fatores de Troca do Nucleotídeo Guanina/metabolismo
Sistema de Sinalização das MAP Quinases
Proteínas Quinases Ativadas por Mitógeno/metabolismo
Proteínas Serina-Treonina Quinases/metabolismo
Sinapses/fisiologia
[Mh] Termos MeSH secundário: Animais
Animais Geneticamente Modificados
Axônios/metabolismo
Caenorhabditis elegans/genética
Caenorhabditis elegans/crescimento & desenvolvimento
Proteínas de Caenorhabditis elegans/genética
Fatores de Troca do Nucleotídeo Guanina/genética
Proteínas Quinases Ativadas por Mitógeno/genética
Mutação
Neurogênese
Neurônios/metabolismo
Terminações Pré-Sinápticas/metabolismo
Proteínas Quinases/genética
Proteínas Quinases/metabolismo
Proteínas Serina-Treonina Quinases/genética
Transdução de Sinais
Sinapses/enzimologia
Ubiquitina-Proteína Ligases/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Caenorhabditis elegans Proteins); 0 (Guanine Nucleotide Exchange Factors); 0 (RPM-1 protein, C elegans); EC 2.3.2.27 (Ubiquitin-Protein Ligases); EC 2.7.- (Protein Kinases); EC 2.7.1.- (jkk-1 protein, C elegans); EC 2.7.11.1 (Mig-15 protein, C elegans); EC 2.7.11.1 (Protein-Serine-Threonine Kinases); EC 2.7.11.24 (JNK-1 protein, C elegans); EC 2.7.11.24 (Mitogen-Activated Protein Kinases)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180227
[Lr] Data última revisão:
180227
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171212
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pgen.1007095



página 1 de 4955 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde