Base de dados : MEDLINE
Pesquisa : A11.284.180.120 [Categoria DeCS]
Referências encontradas : 203 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 21 ir para página                         

  1 / 203 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28417374
[Au] Autor:Czjzek M; Ficko-Blean E
[Ad] Endereço:UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Universite, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, Bretagne, France. czjzek@sb-roscoff.fr.
[Ti] Título:Probing the Complex Architecture of Multimodular Carbohydrate-Active Enzymes Using a Combination of Small Angle X-Ray Scattering and X-Ray Crystallography.
[So] Source:Methods Mol Biol;1588:239-253, 2017.
[Is] ISSN:1940-6029
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The various modules in multimodular carbohydrate-active enzymes (CAZymes) may function in catalysis, carbohydrate binding, protein-protein interactions or as linkers. Here, we describe how combining the biophysical techniques of Small Angle X-ray Scattering (SAXS) and macromolecular X-ray crystallography (XRC) provides a powerful tool for examination into questions related to overall structural organization of ultra multimodular CAZymes.
[Mh] Termos MeSH primário: Glicosídeo Hidrolases/química
Glicosídeo Hidrolases/isolamento & purificação
[Mh] Termos MeSH secundário: Metabolismo dos Carboidratos
Celulossomas/química
Clostridium perfringens/enzimologia
Cristalografia por Raios X
Espalhamento a Baixo Ângulo
Difração de Raios X
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
EC 3.2.1.- (Glycoside Hydrolases)
[Em] Mês de entrada:1704
[Cu] Atualização por classe:170421
[Lr] Data última revisão:
170421
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170419
[St] Status:MEDLINE
[do] DOI:10.1007/978-1-4939-6899-2_19


  2 / 203 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28417369
[Au] Autor:Badruna L; Burlat V; Montanier CY
[Ad] Endereço:LISBP, Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France.
[Ti] Título:CBMs as Probes to Explore Plant Cell Wall Heterogeneity Using Immunocytochemistry.
[So] Source:Methods Mol Biol;1588:181-197, 2017.
[Is] ISSN:1940-6029
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Immunocytochemistry is a widely used technique to localize antigen within intact tissues. Plant cell walls are complex matrixes of highly decorated polysaccharides and the large number of CBM families displaying specific substrate recognition reflects this complexity. The accessibility of large proteins, such as antibodies, to their cell wall epitopes may be sometimes difficult due to steric hindrance problems. Due to their smaller size, CBMs are interesting alternative probes. The aim of this chapter is to describe the use of CBM as probes to explore complex polysaccharide topochemistry in muro and to quantify enzymatic deconstruction.
[Mh] Termos MeSH primário: Parede Celular/química
Celulossomas/química
Imuno-Histoquímica/métodos
Células Vegetais/química
[Mh] Termos MeSH secundário: Clostridium thermocellum/química
Microscopia de Força Atômica/métodos
Complexos Multienzimáticos/química
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Multienzyme Complexes)
[Em] Mês de entrada:1704
[Cu] Atualização por classe:170421
[Lr] Data última revisão:
170421
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170419
[St] Status:MEDLINE
[do] DOI:10.1007/978-1-4939-6899-2_14


  3 / 203 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28417363
[Au] Autor:Stern J; Artzi L; Moraïs S; Fontes CMGA; Bayer EA
[Ad] Endereço:Faculty of Biochemistry, Department of Biomolecular Sciences, The Weizmann Institute of Science, Ullmann Building of Life Sciences, Room 226, Rehovot, 76100, Israel.
[Ti] Título:Carbohydrate Depolymerization by Intricate Cellulosomal Systems.
[So] Source:Methods Mol Biol;1588:93-116, 2017.
[Is] ISSN:1940-6029
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Cellulosomes are multi-enzymatic nanomachines that have been fine-tuned through evolution to efficiently deconstruct plant biomass. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between the various enzyme-borne dockerin modules and the multiple copies of the cohesin modules located on the scaffoldin subunit. Recently, designer cellulosome technology has been established to provide insights into the architectural role of catalytic (enzymatic) and structural (scaffoldin) cellulosomal constituents for the efficient degradation of plant cell wall polysaccharides. Owing to advances in genomics and proteomics, highly structured cellulosome complexes have recently been unraveled, and the information gained has inspired the development of designer cellulosome technology to new levels of complex organization. These higher-order designer cellulosomes have in turn fostered our capacity to enhance the catalytic potential of artificial cellulolytic complexes. In this chapter, methods to produce and employ such intricate cellulosomal complexes are reported.
[Mh] Termos MeSH primário: Celulossomas/metabolismo
Firmicutes/metabolismo
Células Vegetais/metabolismo
[Mh] Termos MeSH secundário: Parede Celular/química
Parede Celular/metabolismo
Clostridium/citologia
Clostridium/metabolismo
Firmicutes/citologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1704
[Cu] Atualização por classe:170421
[Lr] Data última revisão:
170421
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170419
[St] Status:MEDLINE
[do] DOI:10.1007/978-1-4939-6899-2_8


  4 / 203 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28010774
[Au] Autor:Orita T; Sakka M; Kimura T; Sakka K
[Ad] Endereço:Graduated School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Japan. Electronic address: 512d1s1@m.mie-u.ac.jp.
[Ti] Título:Recombinant cellulolytic or xylanolytic complex comprising the full-length scaffolding protein RjCipA and cellulase RjCel5B or xylanase RjXyn10C of Ruminiclostridium josui.
[So] Source:Enzyme Microb Technol;97:63-70, 2017 Feb.
[Is] ISSN:1879-0909
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Three cellulosomal subunits of Ruminiclostridium josui, the full-length scaffolding protein CipA (RjCipA), a cellulase Cel5B (RjCel5B) and a xylanase Xyn10C (RjXyn10C), were successfully produced by Escherichia coli recombinant clones. RjCel5B and RjXyn10C were characterized as an endoglucanase and an endoxylanase, respectively. RjCipA, RjCel5B and Xyn10C adsorbed to microcrystalline cellulose (Funacel) and rice straw powder. Interaction between RjCel5B and RjCipA, and RjXyn10C and RjCipA were confirmed by qualitative assays. When a fixed amount of RjCel5B was mixed with different amounts of RjCipA, i.e., at the molar ratio of 6:1 or 6:6, the 6:6 complex showed 6.6-fold higher activity toward Funacel and 11.5-fold higher activity toward rice straw powder than RjCel5B, whereas the 6:1 complex showed only 2.8- and 3.9-folds higher activities toward Funacel and rice straw powder, respectively, than RjCel5B. These results suggest that the family-3 carbohydrate binding module (CBM3) of RjCipA in the RjCel5B-RjCipA complex plays an important role for hydrolysis of cellulose and the substrate-targeting effect of the CBM is more significant than the proximity effect caused by the presence of plural catalytic subunits adjoining each other. In contrast, the 6:1 complex of RjXyn10C and RjCipA showed 45% and 28% of the activities of RjXyn10C toward insoluble wheat arabinoxylan and rice straw powder, respectively. These results suggest that both a negative proximity effect and substrate-isolating effect, but not substrate-targeting effect, are caused by the CBM3 with inappropriate polysaccharide specificity. Substrate-targeting, proximity and substrate-isolating effects are discussed.
[Mh] Termos MeSH primário: Proteínas de Bactérias/metabolismo
Celulase/metabolismo
Clostridiales/metabolismo
Endo-1,4-beta-Xilanases/metabolismo
[Mh] Termos MeSH secundário: Proteínas de Bactérias/genética
Biocombustíveis
Biomassa
Biotecnologia
Celulase/genética
Celulossomas/enzimologia
Celulossomas/genética
Celulossomas/metabolismo
Clostridiales/enzimologia
Clostridiales/genética
Endo-1,4-beta-Xilanases/genética
Enzimas Imobilizadas/genética
Enzimas Imobilizadas/metabolismo
Proteínas Recombinantes/genética
Proteínas Recombinantes/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Biofuels); 0 (Enzymes, Immobilized); 0 (Recombinant Proteins); EC 3.2.1.4 (Cellulase); EC 3.2.1.8 (Endo-1,4-beta Xylanases)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170612
[Lr] Data última revisão:
170612
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161225
[St] Status:MEDLINE


  5 / 203 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28010772
[Au] Autor:Osiro KO; de Camargo BR; Satomi R; Hamann PR; Silva JP; de Sousa MV; Quirino BF; Aquino EN; Felix CR; Murad AM; Noronha EF
[Ad] Endereço:Enzymology Laboratory, Department of Cellular Biology, University of Brasília, Brasilia, DF, Brazil.
[Ti] Título:Characterization of Clostridium thermocellum (B8) secretome and purified cellulosomes for lignocellulosic biomass degradation.
[So] Source:Enzyme Microb Technol;97:43-54, 2017 Feb.
[Is] ISSN:1879-0909
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The main goal of the present study was a complete proteomic characterization of total proteins eluted from residual substrate-bound proteins (RSBP), and cellulosomes secreted by Clostridium thermocellum B8 during growth in the presence of microcrystalline cellulose as a carbon source. The second goal was to evaluate their potential use as enzymatic blends for hydrolyzing agro-industrial residues to produce fermentable sugars. Protein identification through LC-MS/MS mass spectrometry showed that the RSBP sample, in addition to cellulosomal proteins, contains a wide variety of proteins, including those without a well-characterized role in plant cell wall degradation. The RSBP subsample defined as purified cellulosomes (PC) consists mainly of glycoside hydrolases grouped in families 5, 8, 9, 10 and 48. Dynamic light scattering, DLS, analysis of PC resulted in two protein peaks (pi1 and pi2) presenting molecular masses in agreement with those previously described for cellulosomes and polycellulosomes. These peaks weren't detected after PC treatment with 1.0% Tween. PC and RSBP presented maximal activities at temperatures ranging from 60° to 70°C and at pH 5.0. RSBP retained almost all of its activity after incubation at 50, 60 and 70°C and PC showed remarkable thermostability at 50 and 60°C. RSBP holocellullolytic activities were inhibited by phenolic compounds, while PC showed either increasing activity or a lesser degree of inhibition. RSBP and PC hydrolyze sugar cane straw, cotton waste and microcrystalline cellulose, liberating a diversity of saccharides; however, the highest concentration of released sugar was obtained for assays carried out using PC as an enzymatic blend and after ten days at 50°C.
[Mh] Termos MeSH primário: Proteínas de Bactérias/metabolismo
Clostridium thermocellum/metabolismo
Lignina/metabolismo
[Mh] Termos MeSH secundário: Biocombustíveis
Biomassa
Biotecnologia
Celulossomas/metabolismo
Clostridium thermocellum/enzimologia
Glicosídeo Hidrolases/metabolismo
Hidrólise
Proteoma/metabolismo
Proteômica
Espectrometria de Massas em Tandem
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Biofuels); 0 (Proteome); 11132-73-3 (lignocellulose); 9005-53-2 (Lignin); EC 3.2.1.- (Glycoside Hydrolases)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170612
[Lr] Data última revisão:
170612
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161225
[St] Status:MEDLINE


  6 / 203 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27941816
[Au] Autor:Artzi L; Bayer EA; Moraïs S
[Ad] Endereço:Department of Biomolecular Sciences, The Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel.
[Ti] Título:Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides.
[So] Source:Nat Rev Microbiol;15(2):83-95, 2017 02.
[Is] ISSN:1740-1534
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Cellulosomes are multienzyme complexes that are produced by anaerobic cellulolytic bacteria for the degradation of lignocellulosic biomass. They comprise a complex of scaffoldin, which is the structural subunit, and various enzymatic subunits. The intersubunit interactions in these multienzyme complexes are mediated by cohesin and dockerin modules. Cellulosome-producing bacteria have been isolated from a large variety of environments, which reflects their prevalence and the importance of this microbial enzymatic strategy. In a given species, cellulosomes exhibit intrinsic heterogeneity, and between species there is a broad diversity in the composition and configuration of cellulosomes. With the development of modern technologies, such as genomics and proteomics, the full protein content of cellulosomes and their expression levels can now be assessed and the regulatory mechanisms identified. Owing to their highly efficient organization and hydrolytic activity, cellulosomes hold immense potential for application in the degradation of biomass and are the focus of much effort to engineer an ideal microorganism for the conversion of lignocellulose to valuable products, such as biofuels.
[Mh] Termos MeSH primário: Parede Celular/metabolismo
Celulossomas/enzimologia
Celulossomas/metabolismo
Clostridium thermocellum/metabolismo
Lignina/metabolismo
[Mh] Termos MeSH secundário: Proteínas de Ciclo Celular/metabolismo
Celulossomas/ultraestrutura
Proteínas Cromossômicas não Histona/metabolismo
Células Vegetais/metabolismo
Plantas/metabolismo
Plantas/microbiologia
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Cell Cycle Proteins); 0 (Chromosomal Proteins, Non-Histone); 0 (cohesins); 11132-73-3 (lignocellulose); 9005-53-2 (Lignin)
[Em] Mês de entrada:1705
[Cu] Atualização por classe:170713
[Lr] Data última revisão:
170713
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161213
[St] Status:MEDLINE
[do] DOI:10.1038/nrmicro.2016.164


  7 / 203 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27838255
[Au] Autor:Zhou S; Li HF; Garlapalli R; Nokes SE; Flythe M; Rankin SE; Knutson BL
[Ad] Endereço:Department of Chemical and Materials Engineering, United States.
[Ti] Título:Hydrolysis of model cellulose films by cellulosomes: Extension of quartz crystal microbalance technique to multienzymatic complexes.
[So] Source:J Biotechnol;241:42-49, 2017 Jan 10.
[Is] ISSN:1873-4863
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:Bacterial cellulosomes contain highly efficient complexed cellulases and have been studied extensively for the production of lignocellulosic biofuels and bioproducts. A surface measurement technique, quartz crystal microbalance with dissipation (QCM-D), was extended for the investigation of real-time binding and hydrolysis of model cellulose surfaces from free fungal cellulases to the cellulosomes of Clostridium thermocellum (Ruminiclostridium thermocellum). In differentiating the activities of cell-free and cell-bound cellulosomes, greater than 68% of the cellulosomes in the crude cell broth were found to exist unattached to the cell across multiple growth stages. The initial hydrolysis rate of crude cell broth measured by QCM was greater than that of cell-free cellulosomes, but the corresponding frequency drop (a direct measure of the mass of enzyme adsorbed to the film) of crude cell broth was less than that of the cell-free cellulosomes, consistent with the underestimation of the cell mass adsorbed using QCM. Inhibition of hydrolysis by cellobiose (0-10g/L), which is similar for crude cell broth and cell-free cellulosomes, demonstrates the sensitivity of the QCM to environmental perturbations of multienzymatic complexes. QCM measurements using multienzymatic complexes may be used to screen and optimize hydrolysis conditions and to develop mechanistic, surface-based models of enzymatic cellulose deconstruction.
[Mh] Termos MeSH primário: Celulose/metabolismo
Celulossomas/metabolismo
Técnicas de Microbalança de Cristal de Quartzo/métodos
[Mh] Termos MeSH secundário: Celulase/metabolismo
Celulose/química
Clostridium thermocellum/enzimologia
Clostridium thermocellum/genética
Proteínas Fúngicas/metabolismo
Hidrólise
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Fungal Proteins); 9004-34-6 (Cellulose); EC 3.2.1.4 (Cellulase)
[Em] Mês de entrada:1702
[Cu] Atualização por classe:170228
[Lr] Data última revisão:
170228
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161114
[St] Status:MEDLINE


  8 / 203 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27712009
[Au] Autor:Bensoussan L; Moraïs S; Dassa B; Friedman N; Henrissat B; Lombard V; Bayer EA; Mizrahi I
[Ad] Endereço:Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel.
[Ti] Título:Broad phylogeny and functionality of cellulosomal components in the bovine rumen microbiome.
[So] Source:Environ Microbiol;19(1):185-197, 2017 Jan.
[Is] ISSN:1462-2920
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The cellulosome is an extracellular multi-enzyme complex that is considered one of the most efficient plant cell wall-degrading strategies devised by nature. Its unique modular architecture, achieved by high affinity and specific interaction between protein modules (cohesins and dockerins) enables formation of various enzyme combinations. Extensive research has been dedicated to the mechanistic nature of the cellulosome complex. Nevertheless, little is known regarding its distribution and abundance among microbes in natural plant fibre-rich environments. Here, we explored these questions in bovine rumen microbial communities, specialized in efficient degradation of lignocellulosic plant material. We bioinformatically screened for cellulosomal modules in this complex environment using a previously published ultra-deep fibre-adherent rumen metagenome. Intriguingly, a large portion of the functions of the dockerin-containing proteins were related to alternative biological processes, and not necessarily to the classic fibre degradation function. Our analysis was experimentally validated by characterizing specific interactions between selected cohesins and dockerins and revealed that cellulosome is a more generalized strategy used by diverse bacteria, some of which were not previously associated with cellulosome production. Remarkably, our results provide additional proof of similarity among rumen microbial communities worldwide. This study suggests a broader and widespread role for the cellulosomal machinery in nature.
[Mh] Termos MeSH primário: Bactérias/isolamento & purificação
Celulossomas/enzimologia
Microbioma Gastrointestinal
Filogenia
Rúmen/microbiologia
[Mh] Termos MeSH secundário: Animais
Bactérias/classificação
Bactérias/genética
Bactérias/metabolismo
Proteínas de Bactérias/genética
Proteínas de Bactérias/metabolismo
Bovinos
Celulossomas/genética
Metagenoma
Complexos Multienzimáticos/genética
Complexos Multienzimáticos/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Multienzyme Complexes)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170913
[Lr] Data última revisão:
170913
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161007
[St] Status:MEDLINE
[do] DOI:10.1111/1462-2920.13561


  9 / 203 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27875311
[Au] Autor:Bule P; Alves VD; Leitão A; Ferreira LM; Bayer EA; Smith SP; Gilbert HJ; Najmudin S; Fontes CM
[Ad] Endereço:From the CIISA-Faculdade de Medicina Veterinária, ULisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
[Ti] Título:Single Binding Mode Integration of Hemicellulose-degrading Enzymes via Adaptor Scaffoldins in Ruminococcus flavefaciens Cellulosome.
[So] Source:J Biol Chem;291(52):26658-26669, 2016 Dec 23.
[Is] ISSN:1083-351X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The assembly of one of Nature's most elaborate multienzyme complexes, the cellulosome, results from the binding of enzyme-borne dockerins to reiterated cohesin domains located in a non-catalytic primary scaffoldin. Generally, dockerins present two similar cohesin-binding interfaces that support a dual binding mode. The dynamic integration of enzymes in cellulosomes, afforded by the dual binding mode, is believed to incorporate additional flexibility in highly populated multienzyme complexes. Ruminococcus flavefaciens, the primary degrader of plant structural carbohydrates in the rumen of mammals, uses a portfolio of more than 220 different dockerins to assemble the most intricate cellulosome known to date. A sequence-based analysis organized R. flavefaciens dockerins into six groups. Strikingly, a subset of R. flavefaciens cellulosomal enzymes, comprising dockerins of groups 3 and 6, were shown to be indirectly incorporated into primary scaffoldins via an adaptor scaffoldin termed ScaC. Here, we report the crystal structure of a group 3 R. flavefaciens dockerin, Doc3, in complex with ScaC cohesin. Doc3 is unusual as it presents a large cohesin-interacting surface that lacks the structural symmetry required to support a dual binding mode. In addition, dockerins of groups 3 and 6, which bind exclusively to ScaC cohesin, display a conserved mechanism of protein recognition that is similar to Doc3. Groups 3 and 6 dockerins are predominantly appended to hemicellulose-degrading enzymes. Thus, single binding mode dockerins interacting with adaptor scaffoldins exemplify an evolutionary pathway developed by R. flavefaciens to recruit hemicellulases to the sophisticated cellulosomes acting in the gastrointestinal tract of mammals.
[Mh] Termos MeSH primário: Proteínas de Bactérias/metabolismo
Celulase/metabolismo
Celulossomas/metabolismo
Polissacarídeos/metabolismo
Ruminococcus/enzimologia
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Proteínas de Bactérias/química
Proteínas de Bactérias/genética
Proteínas de Ciclo Celular/metabolismo
Celulase/química
Celulossomas/microbiologia
Proteínas Cromossômicas não Histona/metabolismo
Cristalização
Cristalografia por Raios X
Infecções por Bactérias Gram-Positivas/microbiologia
Complexos Multienzimáticos
Ligação Proteica
Conformação Proteica
Ruminococcus/genética
Homologia de Sequência de Aminoácidos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Cell Cycle Proteins); 0 (Chromosomal Proteins, Non-Histone); 0 (Multienzyme Complexes); 0 (Polysaccharides); 0 (cohesins); 8024-50-8 (hemicellulose); EC 3.2.1.4 (Cellulase)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170601
[Lr] Data última revisão:
170601
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161123
[St] Status:MEDLINE
[do] DOI:10.1074/jbc.M116.761643


  10 / 203 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27555215
[Au] Autor:Moraïs S; Cockburn DW; Ben-David Y; Koropatkin NM; Martens EC; Duncan SH; Flint HJ; Mizrahi I; Bayer EA
[Ad] Endereço:Biomolecular Sciences Department, The Weizmann Institute of Science, Rehovot, Israel.
[Ti] Título:Lysozyme activity of the Ruminococcus champanellensis cellulosome.
[So] Source:Environ Microbiol;18(12):5112-5122, 2016 Dec.
[Is] ISSN:1462-2920
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Ruminococcus champanellensis is a keystone species in the human gut that produces an intricate cellulosome system of various architectures. A variety of cellulosomal enzymes have been identified, which exhibit a range of hydrolytic activities on lignocellulosic substrates. We describe herein a unique R. champanellensis scaffoldin, ScaK, which is expressed during growth on cellobiose and comprises a cohesin module and a family 25 glycoside hydrolase (GH25). The GH25 is non-autolytic and exhibits lysozyme-mediated lytic activity against several bacterial species. Despite the narrow acidic pH curve, the enzyme is active along a temperature range from 2 to 85°C and is stable at very high temperatures for extended incubation periods. The ScaK cohesin was shown to bind selectively to the dockerin of a monovalent scaffoldin (ScaG), thus enabling formation of a cell-free cellulosome, whereby ScaG interacts with a divalent scaffodin (ScaA) that bears the enzymes either directly or through additional monovalent scaffoldins (ScaC and ScaD). The ScaK cohesin also interacts with the dockerin of a protein comprising multiple Fn3 domains that can potentially promote adhesion to carbohydrates and the bacterial cell surface. A cell-free cellulosomal GH25 lysozyme may provide a bacterial strategy to both hydrolyze lignocellulose and repel eventual food competitors and/or cheaters.
[Mh] Termos MeSH primário: Proteínas de Bactérias/metabolismo
Celulossomas/enzimologia
Muramidase/metabolismo
Ruminococcus/enzimologia
[Mh] Termos MeSH secundário: Proteínas de Bactérias/genética
Membrana Celular/metabolismo
Celulose/metabolismo
Celulossomas/genética
Celulossomas/metabolismo
Seres Humanos
Muramidase/genética
Ruminococcus/genética
Ruminococcus/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 9004-34-6 (Cellulose); EC 3.2.1.17 (Muramidase)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170821
[Lr] Data última revisão:
170821
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160825
[St] Status:MEDLINE
[do] DOI:10.1111/1462-2920.13501



página 1 de 21 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde