Base de dados : MEDLINE
Pesquisa : A11.284.430.106.279.345.190.160.175 [Categoria DeCS]
Referências encontradas : 2923 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 293 ir para página                         

  1 / 2923 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28460277
[Au] Autor:Gruber S
[Ad] Endereço:Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, 1015 Lausanne, Switzerland. Electronic address: stephan.gruber@unil.ch.
[Ti] Título:Shaping chromosomes by DNA capture and release: gating the SMC rings.
[So] Source:Curr Opin Cell Biol;46:87-93, 2017 Jun.
[Is] ISSN:1879-0410
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:SMC proteins organize chromosomes to coordinate essential nuclear processes such as gene expression and DNA recombination as well as to segregate chromosomes during cell division. SMC mediated DNA bridging keeps sister chromatids aligned for much of the cell cycle, while the active extrusion of DNA loops by SMC presumably compacts chromosomes. Chromosome superstructure is thus given by the number of DNA linkages and the size of chromosomal DNA loops, which in turn depend on the dynamics of SMC loading and unloading. The latter is regulated by the intrinsic SMC ATPase activity, multiple external factors and post-translational modification. Here, I highlight recent advances in our understanding of DNA capture and release by SMC-with a focus on cohesin.
[Mh] Termos MeSH primário: Adenosina Trifosfatases/metabolismo
Proteínas Cromossômicas não Histona/metabolismo
Cromossomos/metabolismo
Proteínas de Ligação a DNA/metabolismo
Complexos Multiproteicos/metabolismo
[Mh] Termos MeSH secundário: Animais
Proteínas de Ciclo Celular/metabolismo
Divisão Celular
Cromátides/metabolismo
DNA/metabolismo
Seres Humanos
Processamento de Proteína Pós-Traducional
Leveduras/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Cell Cycle Proteins); 0 (Chromosomal Proteins, Non-Histone); 0 (DNA-Binding Proteins); 0 (Multiprotein Complexes); 0 (cohesins); 0 (condensin complexes); 9007-49-2 (DNA); EC 3.6.1.- (Adenosine Triphosphatases)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171128
[Lr] Data última revisão:
171128
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170502
[St] Status:MEDLINE


  2 / 2923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28911102
[Au] Autor:Nath S; Somyajit K; Mishra A; Scully R; Nagaraju G
[Ad] Endereço:Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
[Ti] Título:FANCJ helicase controls the balance between short- and long-tract gene conversions between sister chromatids.
[So] Source:Nucleic Acids Res;45(15):8886-8900, 2017 Sep 06.
[Is] ISSN:1362-4962
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The FANCJ DNA helicase is linked to hereditary breast and ovarian cancers as well as bone marrow failure disorder Fanconi anemia (FA). Although FANCJ has been implicated in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), the molecular mechanism underlying the tumor suppressor functions of FANCJ remains obscure. Here, we demonstrate that FANCJ deficient human and hamster cells exhibit reduction in the overall gene conversions in response to a site-specific chromosomal DSB induced by I-SceI endonuclease. Strikingly, the gene conversion events were biased in favour of long-tract gene conversions in FANCJ depleted cells. The fine regulation of short- (STGC) and long-tract gene conversions (LTGC) by FANCJ was dependent on its interaction with BRCA1 tumor suppressor. Notably, helicase activity of FANCJ was essential for controlling the overall HR and in terminating the extended repair synthesis during sister chromatid recombination (SCR). Moreover, cells expressing FANCJ pathological mutants exhibited defective SCR with an increased frequency of LTGC. These data unravel the novel function of FANCJ helicase in regulating SCR and SCR associated gene amplification/duplications and imply that these functions of FANCJ are crucial for the genome maintenance and tumor suppression.
[Mh] Termos MeSH primário: Proteína BRCA1/genética
Fatores de Transcrição de Zíper de Leucina Básica/genética
Cromátides/química
DNA/genética
Proteínas de Grupos de Complementação da Anemia de Fanconi/genética
Reparo de DNA por Recombinação
[Mh] Termos MeSH secundário: Animais
Proteína BRCA1/metabolismo
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
Células CHO
Linhagem Celular Tumoral
Cromátides/metabolismo
Cricetulus
DNA/metabolismo
Quebras de DNA de Cadeia Dupla
Desoxirribonucleases de Sítio Específico do Tipo II/farmacologia
Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo
Pontos de Checagem da Fase G2 do Ciclo Celular
Regulação da Expressão Gênica
Recombinação Homóloga/efeitos dos fármacos
Seres Humanos
Mutação
Osteoblastos/citologia
Osteoblastos/efeitos dos fármacos
Osteoblastos/metabolismo
Ligação Proteica
Proteínas de Saccharomyces cerevisiae/farmacologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (BACH1 protein, human); 0 (BRCA1 Protein); 0 (BRCA1 protein, human); 0 (Basic-Leucine Zipper Transcription Factors); 0 (Fanconi Anemia Complementation Group Proteins); 0 (Saccharomyces cerevisiae Proteins); 9007-49-2 (DNA); EC 3.1.21.- (SCEI protein, S cerevisiae); EC 3.1.21.4 (Deoxyribonucleases, Type II Site-Specific)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171012
[Lr] Data última revisão:
171012
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170916
[St] Status:MEDLINE
[do] DOI:10.1093/nar/gkx586


  3 / 2923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28886051
[Au] Autor:Baek IJ; Moss DS; Lustig AJ
[Ad] Endereço:Department of Biochemistry and Molecular Biology, Tulane University Medical Center, New Orleans, Louisiana, United States of America.
[Ti] Título:The mre11 A470 alleles influence the hereditability and the segregation of telosomes in Saccharomyces cerevisiae.
[So] Source:PLoS One;12(9):e0183549, 2017.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Telomeres, the nucleoprotein complexes at the termini of linear chromosomes, are essential for the processes of end replication, end protection, and chromatin segregation. The Mre11 complex is involved in multiple cellular roles in DNA repair and structure in the regulation and function of telomere size homeostasis. In this study, we characterize yeast telomere chromatin structure, phenotypic heritability, and chromatin segregation in both wild-type [MRE11] and A470 motif alleles. MRE11 strains confer a telomere size of 300 base pairs of G+T irregular simple sequence repeats. This DNA and a portion of subtelomeric DNA is embedded in a telosome: a MNase-resistant non-nucleosomal particle. Chromatin immunoprecipitation shows a three to four-fold lower occupancy of Mre11A470T proteins than wild-type proteins in telosomes. Telosomes containing the Mre11A470T protein confer a greater resistance to MNase digestion than wild-type telosomes. The integration of a wild-type MRE11 allele into an ectopic locus in the genome of an mre11A470T mutant and the introduction of an mre11A470T allele at an ectopic site in a wild-type strain lead to unexpectedly differing results. In each case, the replicated sister chromatids inherit telosomes containing only the protein encoded by the genomic mre11 locus, even in the presence of protein encoded by the opposing ectopic allele. We hypothesize that the telosome segregates by a conservative mechanism. These data support a mechanism for the linkage between sister chromatid replication and maintenance of either identical mutant or identical wild-type telosomes after replication of sister chromatids. These data suggest the presence of an active mechanism for chromatin segregation in yeast.
[Mh] Termos MeSH primário: Saccharomyces cerevisiae/genética
Saccharomyces cerevisiae/metabolismo
Telômero/genética
Telômero/metabolismo
[Mh] Termos MeSH secundário: Alelos
Cromátides/genética
Cromátides/metabolismo
Imunoprecipitação da Cromatina
Mutação/genética
Proteínas de Saccharomyces cerevisiae/genética
Proteínas de Saccharomyces cerevisiae/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Saccharomyces cerevisiae Proteins)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171016
[Lr] Data última revisão:
171016
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170909
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0183549


  4 / 2923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28797117
[Au] Autor:Singh G; Da Ines O; Gallego ME; White CI
[Ad] Endereço:Génétique, Reproduction et Dévelopement, UMR CNRS 6293 - INSERM U1103 - Université Cleront Auvergne Campus Universitaire des Cézeaux, Aubiere, France.
[Ti] Título:Analysis of the impact of the absence of RAD51 strand exchange activity in Arabidopsis meiosis.
[So] Source:PLoS One;12(8):e0183006, 2017.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The ploidy of eukaryote gametes must be halved to avoid doubling of numbers of chromosomes with each generation and this is carried out by meiosis, a specialized cell division in which a single chromosomal replication phase is followed by two successive nuclear divisions. With some exceptions, programmed recombination ensures the proper pairing and distribution of homologous pairs of chromosomes in meiosis and recombination defects thus lead to sterility. Two highly related recombinases are required to catalyse the key strand-invasion step of meiotic recombination and it is the meiosis-specific DMC1 which is generally believed to catalyse the essential non-sister chromatid crossing-over, with RAD51 catalysing sister-chromatid and non-cross-over events. Recent work in yeast and plants has however shown that in the absence of RAD51 strand-exchange activity, DMC1 is able to repair all meiotic DNA breaks and surprisingly, that this does not appear to affect numbers of meiotic cross-overs. In this work we confirm and extend this conclusion. Given that more than 95% of meiotic homologous recombination in Arabidopsis does not result in inter-homologue crossovers, Arabidopsis is a particularly sensitive model for testing the relative importance of the two proteins-even minor effects on the non-crossover event population should produce detectable effects on crossing-over. Although the presence of RAD51 protein provides essential support for the action of DMC1, our results show no significant effect of the absence of RAD51 strand-exchange activity on meiotic crossing-over rates or patterns in different chromosomal regions or across the whole genome of Arabidopsis, strongly supporting the argument that DMC1 catalyses repair of all meiotic DNA breaks, not only non-sister cross-overs.
[Mh] Termos MeSH primário: Proteínas de Arabidopsis/metabolismo
Arabidopsis/citologia
Quebras de DNA
Rad51 Recombinase/metabolismo
[Mh] Termos MeSH secundário: Arabidopsis/genética
Arabidopsis/metabolismo
Proteínas de Arabidopsis/genética
Cromátides/genética
Cromátides/metabolismo
Reparo do DNA
Recombinação Homóloga
Meiose
Rad51 Recombinase/genética
Recombinação Genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Arabidopsis Proteins); EC 2.7.7.- (Rad51 Recombinase)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171004
[Lr] Data última revisão:
171004
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170811
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0183006


  5 / 2923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28781233
[Au] Autor:Krishnan S; Smits AH; Vermeulen M; Reinberg D
[Ad] Endereço:Howard Hughes Medical Institute, New York University Langone School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA.
[Ti] Título:Phospho-H1 Decorates the Inter-chromatid Axis and Is Evicted along with Shugoshin by SET during Mitosis.
[So] Source:Mol Cell;67(4):579-593.e6, 2017 Aug 17.
[Is] ISSN:1097-4164
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Precise control of sister chromatid separation during mitosis is pivotal to maintaining genomic integrity. Yet, the regulatory mechanisms involved are not well understood. Remarkably, we discovered that linker histone H1 phosphorylated at S/T18 decorated the inter-chromatid axial DNA on mitotic chromosomes. Sister chromatid resolution during mitosis required the eviction of such H1S/T18ph by the chaperone SET, with this process being independent of and most likely downstream of arm-cohesin dissociation. SET also directed the disassembly of Shugoshins in a polo-like kinase 1-augmented manner, aiding centromere resolution. SET ablation compromised mitotic fidelity as evidenced by unresolved sister chromatids with marked accumulation of H1S/T18ph and centromeric Shugoshin. Thus, chaperone-assisted eviction of linker histones and Shugoshins is a fundamental step in mammalian mitotic progression. Our findings also elucidate the functional implications of the decades-old observation of mitotic linker histone phosphorylation, serving as a paradigm to explore the role of linker histones in bio-signaling processes.
[Mh] Termos MeSH primário: Proteínas de Ciclo Celular/metabolismo
Cromátides/metabolismo
Chaperonas de Histonas/metabolismo
Histonas/metabolismo
Mitose
Proteínas Oncogênicas/metabolismo
Fatores de Transcrição/metabolismo
[Mh] Termos MeSH secundário: Animais
Proteínas de Ciclo Celular/genética
Cromátides/genética
Segregação de Cromossomos
Fibroblastos/metabolismo
Células HEK293
Chaperonas de Histonas/genética
Seres Humanos
Camundongos
Proteínas Oncogênicas/genética
Fosforilação
Proteínas Serina-Treonina Quinases/genética
Proteínas Serina-Treonina Quinases/metabolismo
Proteínas Proto-Oncogênicas/genética
Proteínas Proto-Oncogênicas/metabolismo
Interferência de RNA
Epitélio Pigmentado da Retina/metabolismo
Transdução de Sinais
Fatores de Transcrição/genética
Transfecção
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Cell Cycle Proteins); 0 (Histone Chaperones); 0 (Histones); 0 (Oncogene Proteins); 0 (Proto-Oncogene Proteins); 0 (SET protein, human); 0 (SET protein, mouse); 0 (SGOL1 protein, human); 0 (Transcription Factors); 0 (shugoshin protein, mouse); EC 2.7.11.1 (Protein-Serine-Threonine Kinases); EC 2.7.11.1 (polo-like kinase 1)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170925
[Lr] Data última revisão:
170925
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170808
[St] Status:MEDLINE


  6 / 2923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28719910
[Au] Autor:Bustamante FO; Aliyeva-Schnorr L; Fuchs J; Beier S; Houben A
[Ad] Endereço:Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
[Ti] Título:Correlating the Genetic and Physical Map of Barley Chromosome 3H Revealed Limitations of the FISH-Based Mapping of Nearby Single-Copy Probes Caused by the Dynamic Structure of Metaphase Chromosomes.
[So] Source:Cytogenet Genome Res;152(2):90-96, 2017.
[Is] ISSN:1424-859X
[Cp] País de publicação:Switzerland
[La] Idioma:eng
[Ab] Resumo:Genetic maps are based on the recombination frequency of molecular markers which often show different positions in comparison to the corresponding physical maps. To decipher the position and order of DNA sequences genetically mapped to terminal and interstitial regions of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization (FISH) on mitotic metaphase chromosomes was performed with 16 genomic single-copy probes derived from fingerprinted BAC contigs. Long genetic distances at subterminal regions translated into short physical distances, confirming that recombination events occur more often at distal regions of chromosome 3H. Nonoverlapping FISH signals were frequently obtained for probes with a physical distance of at least 30-60 kb. Only 8% of the analyzed chromosomes showed a symmetric order of FISH signals on both sister chromatids. Due to the dynamic packing of metaphase chromatin, the order of 2 adjacent single-copy signals along the chromosome arms outside the (peri)centromeric region can only reliably be determined if the cytological distance is approximately 3%, corresponding to 21.6 Mb.
[Mh] Termos MeSH primário: Mapeamento Cromossômico/métodos
Cromossomos de Plantas/genética
Dosagem de Genes
Hordeum/genética
Hibridização in Situ Fluorescente/métodos
Metáfase/genética
Mapeamento Físico do Cromossomo/métodos
[Mh] Termos MeSH secundário: Pareamento de Bases/genética
Cromátides/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170929
[Lr] Data última revisão:
170929
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170719
[St] Status:MEDLINE
[do] DOI:10.1159/000478631


  7 / 2923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28483814
[Au] Autor:Marston AL
[Ad] Endereço:The Wellcome Centre for Cell Biology, School of Biological Sciences University of Edinburgh, Edinburgh, UK.
[Ti] Título:Dalmatian: spotting the difference in cohesin protectors.
[So] Source:EMBO J;36(11):1468-1470, 2017 06 01.
[Is] ISSN:1460-2075
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The cohesin complex prevents separation of chromosomes following their duplication until the appropriate time during cell division. In vertebrates, establishment and maintenance of cohesin-dependent linkages depend on two distinct proteins, sororin and shugoshin. New findings published in show that in , the function of both of these cohesin regulators is carried out by a single hybrid protein, Dalmatian.
[Mh] Termos MeSH primário: Cromátides
Proteínas Nucleares/genética
[Mh] Termos MeSH secundário: Animais
Proteínas de Ciclo Celular/genética
Proteínas Cromossômicas não Histona/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; COMMENT
[Nm] Nome de substância:
0 (Cell Cycle Proteins); 0 (Chromosomal Proteins, Non-Histone); 0 (Nuclear Proteins)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170818
[Lr] Data última revisão:
170818
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170510
[St] Status:MEDLINE
[do] DOI:10.15252/embj.201797090


  8 / 2923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28475600
[Au] Autor:Muñoz-Galván S; García-Rubio M; Ortega P; Ruiz JF; Jimeno S; Pardo B; Gómez-González B; Aguilera A
[Ad] Endereço:Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain.
[Ti] Título:A new role for Rrm3 in repair of replication-born DNA breakage by sister chromatid recombination.
[So] Source:PLoS Genet;13(5):e1006781, 2017 May.
[Is] ISSN:1553-7404
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Replication forks stall at different DNA obstacles such as those originated by transcription. Fork stalling can lead to DNA double-strand breaks (DSBs) that will be preferentially repaired by homologous recombination when the sister chromatid is available. The Rrm3 helicase is a replisome component that promotes replication upon fork stalling, accumulates at highly transcribed regions and prevents not only transcription-induced replication fork stalling but also transcription-associated hyper-recombination. This led us to explore the possible role of Rrm3 in the repair of DSBs when originating at the passage of the replication fork. Using a mini-HO system that induces mainly single-stranded DNA breaks, we show that rrm3Δ cells are defective in DSB repair. The defect is clearly seen in sister chromatid recombination, the major repair pathway of replication-born DSBs. Our results indicate that Rrm3 recruitment to replication-born DSBs is crucial for viability, uncovering a new role for Rrm3 in the repair of broken replication forks.
[Mh] Termos MeSH primário: Quebras de DNA de Cadeia Dupla
DNA Helicases/genética
Proteínas de Saccharomyces cerevisiae/genética
Troca de Cromátide Irmã
[Mh] Termos MeSH secundário: Cromátides/genética
DNA Helicases/metabolismo
Reparo do DNA
Replicação do DNA
Saccharomyces cerevisiae/genética
Saccharomyces cerevisiae/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Saccharomyces cerevisiae Proteins); EC 3.6.1.- (Rrm3 protein, S cerevisiae); EC 3.6.4.- (DNA Helicases)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170615
[Lr] Data última revisão:
170615
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170506
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pgen.1006781


  9 / 2923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28263986
[Au] Autor:Akpinar M; Lesche M; Fanourgakis G; Fu J; Anastassiadis K; Dahl A; Jessberger R
[Ad] Endereço:Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
[Ti] Título:TDRD6 mediates early steps of spliceosome maturation in primary spermatocytes.
[So] Source:PLoS Genet;13(3):e1006660, 2017 03.
[Is] ISSN:1553-7404
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Tudor containing protein 6 (TDRD6) is a male germ line-specific protein essential for chromatoid body (ChB) structure, elongated spermatid development and male fertility. Here we show that in meiotic prophase I spermatocytes TDRD6 interacts with the key protein arginine methyl transferase PRMT5, which supports splicing. TDRD6 also associates with spliceosomal core protein SmB in the absence of RNA and in an arginine methylation dependent manner. In Tdrd6-/- diplotene spermatocytes PRMT5 association with SmB and arginine dimethylation of SmB are much reduced. TDRD6 deficiency impairs the assembly of spliceosomes, which feature 3.5-fold increased levels of U5 snRNPs. In the nucleus, these deficiencies in spliceosome maturation correlate with decreased numbers of SMN-positive bodies and Cajal bodies involved in nuclear snRNP maturation. Transcriptome analysis of TDRD6-deficient diplotene spermatocytes revealed high numbers of splicing defects such as aberrant usage of intron and exons as well as aberrant representation of splice junctions. Together, this study demonstrates a novel function of TDRD6 in spliceosome maturation and mRNA splicing in prophase I spermatocytes.
[Mh] Termos MeSH primário: Proteína-Arginina N-Metiltransferases/metabolismo
Ribonucleoproteína Nuclear Pequena U5/metabolismo
Ribonucleoproteínas/genética
Ribonucleoproteínas/fisiologia
Espermatócitos/metabolismo
Spliceossomos/metabolismo
[Mh] Termos MeSH secundário: Animais
Arginina/química
Cromátides/química
Corpos Enovelados/metabolismo
Metilação de DNA
Desoxiadenosinas/química
Éxons
Ácidos Graxos Insaturados/química
Íntrons
Masculino
Metilação
Camundongos
Camundongos Transgênicos
Microscopia de Fluorescência
Domínios Proteicos
Processamento de RNA
RNA Mensageiro/metabolismo
Espermatócitos/citologia
Tionucleosídeos/química
Transcriptoma
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Deoxyadenosines); 0 (Fatty Acids, Unsaturated); 0 (RNA, Messenger); 0 (Ribonucleoprotein, U5 Small Nuclear); 0 (Ribonucleoproteins); 0 (TDRD6 protein, mouse); 0 (Thionucleosides); 634Z2VK3UQ (5'-methylthioadenosine); 94ZLA3W45F (Arginine); EC 2.1.1.319 (Prmt5 protein, mouse); EC 2.1.1.319 (Protein-Arginine N-Methyltransferases); Y031I2N1EO (leptomycin B)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170917
[Lr] Data última revisão:
170917
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170307
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pgen.1006660


  10 / 2923 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28249986
[Au] Autor:Prugar E; Burnett C; Chen X; Hollingsworth NM
[Ad] Endereço:Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794-5215.
[Ti] Título:Coordination of Double Strand Break Repair and Meiotic Progression in Yeast by a Mek1-Ndt80 Negative Feedback Loop.
[So] Source:Genetics;206(1):497-512, 2017 May.
[Is] ISSN:1943-2631
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:During meiosis, homologous chromosomes are physically connected by crossovers and sister chromatid cohesion. Interhomolog crossovers are generated by the highly regulated repair of programmed double strand breaks (DSBs). The meiosis-specific kinase Mek1 is critical for this regulation. Mek1 downregulates the mitotic recombinase Rad51, indirectly promoting interhomolog strand invasion by the meiosis-specific recombinase Dmc1. Mek1 also promotes the formation of crossovers that are distributed throughout the genome by interference and is the effector kinase for a meiosis-specific checkpoint that delays entry into Meiosis I until DSBs have been repaired. The target of this checkpoint is a meiosis-specific transcription factor, Ndt80, which is necessary to express the polo-like kinase and the cyclin thereby allowing completion of recombination and meiotic progression. This work shows that Mek1 and Ndt80 negatively feedback on each other such that when DSB levels are high, Ndt80 is inactive due to high levels of Mek1 activity. As DSBs are repaired, chromosomes synapse and Mek1 activity is reduced below a threshold that allows activation of Ndt80. Ndt80 transcription of results in degradation of Red1, a meiosis-specific protein required for Mek1 activation, thereby abolishing Mek1 activity completely. Elimination of Mek1 kinase activity allows Rad51-mediated repair of any remaining DSBs. In this way, cells do not enter Meiosis I until recombination is complete and all DSBs are repaired.
[Mh] Termos MeSH primário: Reparo do DNA/genética
Proteínas de Ligação a DNA/genética
MAP Quinase Quinase 1/genética
Meiose/genética
Rad51 Recombinase/genética
Proteínas de Saccharomyces cerevisiae/genética
Fatores de Transcrição/genética
[Mh] Termos MeSH secundário: Cromátides/genética
Pareamento Cromossômico
Segregação de Cromossomos/genética
Quebras de DNA de Cadeia Dupla
Retroalimentação Fisiológica
Fosforilação
Recombinação Genética
Saccharomyces cerevisiae/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (DNA-Binding Proteins); 0 (NDT80 protein, S cerevisiae); 0 (RED1 protein, S cerevisiae); 0 (Saccharomyces cerevisiae Proteins); 0 (Transcription Factors); EC 2.7.12.2 (MAP Kinase Kinase 1); EC 2.7.7.- (Rad51 Recombinase)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:170713
[Lr] Data última revisão:
170713
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170303
[St] Status:MEDLINE
[do] DOI:10.1534/genetics.117.199703



página 1 de 293 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde