Base de dados : MEDLINE
Pesquisa : A11.284.430.214.190.875 [Categoria DeCS]
Referências encontradas : 8470 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 847 ir para página                         

  1 / 8470 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27770501
[Au] Autor:Neumann S; Chassefeyre R; Campbell GE; Encalada SE
[Ad] Endereço:Department of Molecular and Experimental Medicine, Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California.
[Ti] Título:KymoAnalyzer: a software tool for the quantitative analysis of intracellular transport in neurons.
[So] Source:Traffic;18(1):71-88, 2017 01.
[Is] ISSN:1600-0854
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:In axons, proper localization of proteins, vesicles, organelles, and other cargoes is accomplished by the highly regulated coordination of kinesins and dyneins, molecular motors that bind to cargoes and translocate them along microtubule (MT) tracks. Impairment of axonal transport is implicated in the pathogenesis of multiple neurodegenerative disorders including Alzheimer's and Huntington's diseases. To understand how MT-based cargo motility is regulated and to delineate its role in neurodegeneration, it is critical to analyze the detailed dynamics of moving cargoes inside axons. Here, we present KymoAnalyzer, a software tool that facilitates the robust analysis of axonal transport from time-lapse live-imaging sequences. KymoAnalyzer is an open-source software that automatically classifies particle trajectories and systematically calculates velocities, run lengths, pauses, and a wealth of other parameters that are characteristic of motor-based transport. We anticipate that laboratories will easily use this package to unveil previously uncovered intracellular transport details of individually-moving cargoes inside neurons.
[Mh] Termos MeSH primário: Neurônios/metabolismo
Neurônios/fisiologia
[Mh] Termos MeSH secundário: Animais
Transporte Axonal/fisiologia
Axônios/metabolismo
Axônios/fisiologia
Dineínas/metabolismo
Cinesina/metabolismo
Microtúbulos/metabolismo
Microtúbulos/fisiologia
Doenças Neurodegenerativas/metabolismo
Doenças Neurodegenerativas/fisiopatologia
Organelas/metabolismo
Organelas/fisiologia
Software
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
EC 3.6.4.2 (Dyneins); EC 3.6.4.4 (Kinesin)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:180302
[Lr] Data última revisão:
180302
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161023
[St] Status:MEDLINE
[do] DOI:10.1111/tra.12456


  2 / 8470 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29233868
[Au] Autor:Lane JD; Korolchuk VI; Murray JT
[Ad] Endereço:School of Biochemistry, University of Bristol, Bristol, U.K. Jon.Lane@bristol.ac.uk viktor.korolchuk@newcastle.ac.uk James.Murray@tcd.ie.
[Ti] Título:Signalling mechanisms in autophagy: an introduction to the issue.
[So] Source:Essays Biochem;61(6):561-563, 2017 12 12.
[Is] ISSN:1744-1358
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:volume 61 (issue 6), entitled , covers a range of topics in autophagy signalling, touching on emerging new details on the mechanisms of autophagy regulation, novel aspects of selective autophagy and how autophagy functions in organelle homeostasis. It also looks at how autophagy research is leading to better understanding of human disease and plant biology that can be exploited for the benefit of society.
[Mh] Termos MeSH primário: Autofagia/fisiologia
[Mh] Termos MeSH secundário: Animais
Autofagia/genética
Homeostase/genética
Homeostase/fisiologia
Seres Humanos
Organelas/metabolismo
Transdução de Sinais/genética
Transdução de Sinais/fisiologia
[Pt] Tipo de publicação:EDITORIAL
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180220
[Lr] Data última revisão:
180220
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171214
[St] Status:MEDLINE
[do] DOI:10.1042/EBC20170116


  3 / 8470 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28464535
[Au] Autor:Huttanus HM; Feng X
[Ad] Endereço:Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
[Ti] Título:Compartmentalized metabolic engineering for biochemical and biofuel production.
[So] Source:Biotechnol J;12(6), 2017 Jun.
[Is] ISSN:1860-7314
[Cp] País de publicação:Germany
[La] Idioma:eng
[Ab] Resumo:Sub-cellular compartments create specialized reaction chambers in eukaryotes. These compartments provide favorable micro-environments for many metabolic processes. Recently, metabolic engineers have explored the concept of pathway compartmentalization to enhance the performance of metabolic pathways. This strategy offers many unique advantages, including (i) increased local concentrations of enzymes and substrates, (ii) accessing alternate substrate pools, (iii) separation from competing reactions, and (iv) isolation of harmful intermediates or conditions needed for the pathway. In this review, the method of localizing metabolic pathways into specific organelles as well as the benefits of pathway compartmentalization in terms of enhancing the production of value-added chemicals is discussed.
[Mh] Termos MeSH primário: Biocombustíveis
Engenharia Metabólica
Redes e Vias Metabólicas
[Mh] Termos MeSH secundário: Bactérias/metabolismo
Compartimento Celular
Cloroplastos/metabolismo
Mitocôndrias/metabolismo
Organelas/metabolismo
Peroxissomos/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Biofuels)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180216
[Lr] Data última revisão:
180216
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170503
[St] Status:MEDLINE
[do] DOI:10.1002/biot.201700052


  4 / 8470 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28456976
[Au] Autor:Hurbain I; Romao M; Bergam P; Heiligenstein X; Raposo G
[Ad] Endereço:Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France.
[Ti] Título:Analyzing Lysosome-Related Organelles by Electron Microscopy.
[So] Source:Methods Mol Biol;1594:43-71, 2017.
[Is] ISSN:1940-6029
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Intracellular organelles have a particular morphological signature that can only be appreciated by ultrastructural analysis at the electron microscopy level. Optical imaging and associated methodologies allow to explore organelle localization and their dynamics at the cellular level. Deciphering the biogenesis and functions of lysosomes and lysosome-related organelles (LROs) and their dysfunctions requires their visualization and detailed characterization at high resolution by electron microscopy. Here, we provide detailed protocols for studying LROs by transmission electron microscopy. While conventional electron microscopy and its recent improvements is the method of choice to investigate organelle morphology, immunoelectron microscopy allows to localize organelle components and description of their molecular make up qualitatively and quantitatively.
[Mh] Termos MeSH primário: Lisossomos/ultraestrutura
Microscopia Eletrônica de Transmissão/métodos
Organelas/ultraestrutura
[Mh] Termos MeSH secundário: Animais
Seres Humanos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180212
[Lr] Data última revisão:
180212
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170501
[St] Status:MEDLINE
[do] DOI:10.1007/978-1-4939-6934-0_4


  5 / 8470 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29257953
[Au] Autor:Sigg MA; Menchen T; Lee C; Johnson J; Jungnickel MK; Choksi SP; Garcia G; Busengdal H; Dougherty GW; Pennekamp P; Werner C; Rentzsch F; Florman HM; Krogan N; Wallingford JB; Omran H; Reiter JF
[Ad] Endereço:Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
[Ti] Título:Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways.
[So] Source:Dev Cell;43(6):744-762.e11, 2017 12 18.
[Is] ISSN:1878-1551
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease.
[Mh] Termos MeSH primário: Proteínas Adaptadoras de Transdução de Sinal/metabolismo
Proteínas de Ligação a Calmodulina/metabolismo
Cílios/genética
Cílios/metabolismo
[Mh] Termos MeSH secundário: Proteínas Adaptadoras de Transdução de Sinal/genética
Animais
Proteínas de Ligação a Calmodulina/genética
Técnicas de Cultura de Células
Coanoflagelados/metabolismo
Proteínas Hedgehog/metabolismo
Seres Humanos
Camundongos
Mutação
Organelas/metabolismo
Filogenia
Proteômica/métodos
Receptores Acoplados a Proteínas-G/metabolismo
Anêmonas-do-Mar/metabolismo
Ouriços-do-Mar/metabolismo
Transdução de Sinais/genética
Transdução de Sinais/fisiologia
Canais de Receptores Transientes de Potencial/metabolismo
Xenopus laevis/metabolismo
Peixe-Zebra/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Adaptor Proteins, Signal Transducing); 0 (Calmodulin-Binding Proteins); 0 (ENKUR protein, human); 0 (Hedgehog Proteins); 0 (Receptors, G-Protein-Coupled); 0 (Transient Receptor Potential Channels)
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180210
[Lr] Data última revisão:
180210
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171220
[St] Status:MEDLINE


  6 / 8470 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28938119
[Au] Autor:Rochaix JD
[Ad] Endereço:Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland. Electronic address: Jean-David.Rochaix@unige.ch.
[Ti] Título:The Pyrenoid: An Overlooked Organelle Comes out of Age.
[So] Source:Cell;171(1):28-29, 2017 09 21.
[Is] ISSN:1097-4172
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The pyrenoid is a membrane-less organelle that exists in various photosynthetic organisms, such as algae, and wherein most global CO fixation occurs. Two papers from the Jonikas lab in this issue of Cell provide new insights into the structure, protein composition, and dynamics of this important organelle.
[Mh] Termos MeSH primário: Cloroplastos
Organelas
[Mh] Termos MeSH secundário: Fotossíntese
Plantas
[Pt] Tipo de publicação:JOURNAL ARTICLE; COMMENT
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171107
[Lr] Data última revisão:
171107
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170923
[St] Status:MEDLINE


  7 / 8470 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28922357
[Au] Autor:Diez Benavente E; Florez de Sessions P; Moon RW; Holder AA; Blackman MJ; Roper C; Drakeley CJ; Pain A; Sutherland CJ; Hibberd ML; Campino S; Clark TG
[Ad] Endereço:Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
[Ti] Título:Analysis of nuclear and organellar genomes of Plasmodium knowlesi in humans reveals ancient population structure and recent recombination among host-specific subpopulations.
[So] Source:PLoS Genet;13(9):e1007008, 2017 Sep.
[Is] ISSN:1553-7404
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.
[Mh] Termos MeSH primário: Interações Hospedeiro-Patógeno/genética
Malária/genética
Organelas/genética
Plasmodium knowlesi/genética
[Mh] Termos MeSH secundário: Animais
Culicidae/genética
Culicidae/parasitologia
Genoma
Seres Humanos
Insetos Vetores/genética
Macaca fascicularis/genética
Macaca fascicularis/parasitologia
Macaca nemestrina/genética
Macaca nemestrina/parasitologia
Malária/parasitologia
Malária/transmissão
Organelas/parasitologia
Plasmodium knowlesi/patogenicidade
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171018
[Lr] Data última revisão:
171018
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170919
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pgen.1007008


  8 / 8470 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28912172
[Au] Autor:Conlon EG; Manley JL
[Ad] Endereço:Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
[Ti] Título:RNA-binding proteins in neurodegeneration: mechanisms in aggregate.
[So] Source:Genes Dev;31(15):1509-1528, 2017 08 01.
[Is] ISSN:1549-5477
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Neurodegeneration is a leading cause of death in the developed world and a natural, albeit unfortunate, consequence of longer-lived populations. Despite great demand for therapeutic intervention, it is often the case that these diseases are insufficiently understood at the basic molecular level. What little is known has prompted much hopeful speculation about a generalized mechanistic thread that ties these disparate conditions together at the subcellular level and can be exploited for broad curative benefit. In this review, we discuss a prominent theory supported by genetic and pathological changes in an array of neurodegenerative diseases: that neurons are particularly vulnerable to disruption of RNA-binding protein dosage and dynamics. Here we synthesize the progress made at the clinical, genetic, and biophysical levels and conclude that this perspective offers the most parsimonious explanation for these mysterious diseases. Where appropriate, we highlight the reciprocal benefits of cross-disciplinary collaboration between disease specialists and RNA biologists as we envision a future in which neurodegeneration declines and our understanding of the broad importance of RNA processing deepens.
[Mh] Termos MeSH primário: Doenças Neurodegenerativas/metabolismo
Proteínas de Ligação a RNA/metabolismo
[Mh] Termos MeSH secundário: Envelhecimento
Proteínas de Ligação a DNA/genética
Proteínas de Ligação a DNA/metabolismo
Seres Humanos
Repetições de Microssatélites/genética
Doenças Neurodegenerativas/genética
Neurônios/metabolismo
Organelas/metabolismo
RNA/metabolismo
Processamento Pós-Transcricional do RNA
Proteína FUS de Ligação a RNA/genética
Proteína FUS de Ligação a RNA/metabolismo
Proteínas de Ligação a RNA/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (DNA-Binding Proteins); 0 (RNA-Binding Protein FUS); 0 (RNA-Binding Proteins); 0 (TDP-43 protein, human); 63231-63-0 (RNA)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171108
[Lr] Data última revisão:
171108
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170916
[St] Status:MEDLINE
[do] DOI:10.1101/gad.304055.117


  9 / 8470 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28853733
[Au] Autor:Hammer SK; Avalos JL
[Ad] Endereço:Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA.
[Ti] Título:Harnessing yeast organelles for metabolic engineering.
[So] Source:Nat Chem Biol;13(8):823-832, 2017 Aug.
[Is] ISSN:1552-4469
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Each subcellular compartment in yeast offers a unique physiochemical environment and metabolite, enzyme, and cofactor composition. While yeast metabolic engineering has focused on assembling pathways in the cell cytosol, there is growing interest in embracing subcellular compartmentalization. Beyond harnessing distinct organelle properties, physical separation of organelles from the cytosol has the potential to eliminate metabolic crosstalk and enhance compartmentalized pathway efficiency. In this Perspective we review the state of the art in yeast subcellular engineering, highlighting the benefits of targeting biosynthetic pathways to subcellular compartments, including mitochondria, peroxisomes, the ER and/or Golgi, vacuoles, and the cell wall, in different yeast species. We compare the performances of strains developed with subcellular engineering to those of native producers or yeast strains previously engineered with cytosolic pathways. We also identify important challenges that lie ahead, which need to be addressed for organelle engineering to become as mainstream as cytosolic engineering in academia and industry.
[Mh] Termos MeSH primário: Engenharia Metabólica
Organelas/metabolismo
Saccharomyces cerevisiae/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170912
[Lr] Data última revisão:
170912
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170831
[St] Status:MEDLINE
[do] DOI:10.1038/nchembio.2429


  10 / 8470 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28792749
[Au] Autor:Thompson AD; Bewersdorf J; Toomre D; Schepartz A
[Ad] Endereço:Department of Chemistry, ‡Department of Molecular, Cellular and Developmental Biology, §Department of Cell Biology, and ∥Department of Biomedical Engineering, Yale University , New Haven, Connecticut 06520-8107, United States.
[Ti] Título:HIDE Probes: A New Toolkit for Visualizing Organelle Dynamics, Longer and at Super-Resolution.
[So] Source:Biochemistry;56(39):5194-5201, 2017 Oct 03.
[Is] ISSN:1520-4995
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Living cells are complex and dynamic assemblies that carefully sequester and orchestrate multiple diverse processes that enable growth, division, regulation, movement, and communication. Membrane-bound organelles such as the endoplasmic reticulum, mitochondria, plasma membrane, and others are integral to these processes, and their functions demand dynamic reorganization in both space and time. Visualizing these dynamics in live cells over long time periods demands probes that label discrete organelles specifically, at high density, and withstand long-term irradiation. Here we describe the evolution of our work on the development of a set of high-density environmentally sensitive (HIDE) membrane probes that enable long-term, live-cell nanoscopy of the dynamics of multiple organelles in live cells using single-molecule switching and stimulated emission depletion imaging modalities.
[Mh] Termos MeSH primário: Imagem Molecular/métodos
Organelas/metabolismo
[Mh] Termos MeSH secundário: Células HeLa
Seres Humanos
Membranas Intracelulares/metabolismo
Razão Sinal-Ruído
Fatores de Tempo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171010
[Lr] Data última revisão:
171010
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170810
[St] Status:MEDLINE
[do] DOI:10.1021/acs.biochem.7b00545



página 1 de 847 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde