Base de dados : MEDLINE
Pesquisa : A11.284.430.214.190.875.450 [Categoria DeCS]
Referências encontradas : 217 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 22 ir para página                         

  1 / 217 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29355529
[Au] Autor:Wang X; Wang JG; Geng YY; Wang JJ; Zhang XM; Yang SS; Jiang W; Liu WQ
[Ad] Endereço:State Key Laboratories of Agrobiotechnology, College of Biological Sciences, China Agricultural University, PR China.
[Ti] Título:An enhanced anti-tumor effect of apoptin-cecropin B on human hepatoma cells by using bacterial magnetic particle gene delivery system.
[So] Source:Biochem Biophys Res Commun;496(2):719-725, 2018 02 05.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The gene therapy of cancer, due to the limit of its efficiency and safety, has not been widely used in clinical. Recently, bacterial magnetic particles (BMPs), which are membrane-bound nanocrystals found in magnetotactic bacteria, have been exploited as a new gene delivery system. However, its application on gene therapy remains to be explored. In our previous study, we found that a combination of cecropin B (ABPs) and apoptin (VP3) could serve as an effective gene therapeutic agent. Thus, in this study, we used BMPs to deliver the co-expression plasmid of these two gene, namely pVAX1-VA, and evaluated its therapeutic effect on human hepatocellular carcinoma (HepG2). Our results showed that BMPs significantly improved the efficiency of gene transfection (almost 3-fold than Lipofectamine 2000 at 48 h, P < .001), which led to stronger apoptosis (in a peak almost 2-fold than Lipofectamine 2000-pVAX1-VA, P < .01) and growth inhibition of HepG2 cells. More importantly, compared with Lipofectamine 2000-pVAX1-VA group, BMP-pVAX1-VA strikingly inhibited tumor growth (0.60 ±â€¯0.09 g vs. 0.88 ±â€¯0.11 g, P < .05) in nude mouse tumor models and increased the tumor-infiltrating lymphocytes considerably without apparent cytotoxicity. These findings suggest that BMPs could be an attractive gene delivery system for gene therapy and provide a potential available treatment for human hepatocellular carcinoma and maybe some other kinds of tumors.
[Mh] Termos MeSH primário: Proteínas do Capsídeo/genética
Carcinoma Hepatocelular/terapia
Técnicas de Transferência de Genes
Vetores Genéticos/administração & dosagem
Proteínas de Insetos/genética
Neoplasias Hepáticas/terapia
Magnetossomos/química
Magnetospirillum/química
[Mh] Termos MeSH secundário: Animais
Antineoplásicos/metabolismo
Carcinoma Hepatocelular/genética
Carcinoma Hepatocelular/patologia
Portadores de Fármacos/química
Feminino
Terapia Genética/métodos
Vetores Genéticos/genética
Vetores Genéticos/uso terapêutico
Células Hep G2
Seres Humanos
Neoplasias Hepáticas/genética
Neoplasias Hepáticas/patologia
Camundongos Endogâmicos BALB C
Camundongos Nus
Transfecção/métodos
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Antineoplastic Agents); 0 (Capsid Proteins); 0 (Drug Carriers); 0 (Insect Proteins); 0 (VP3 protein, Chicken anemia virus); 80451-05-4 (cecropin B protein, Insecta)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180216
[Lr] Data última revisão:
180216
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180123
[St] Status:MEDLINE


  2 / 217 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29041937
[Au] Autor:Hamdous Y; Chebbi I; Mandawala C; Le Fèvre R; Guyot F; Seksek O; Alphandéry E
[Ad] Endereço:Nanobacterie, 36 boulevard Flandrin, 75116, Paris, France.
[Ti] Título:Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field.
[So] Source:J Nanobiotechnology;15(1):74, 2017 Oct 17.
[Is] ISSN:1477-3155
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:BACKGROUND: Biologics magnetics nanoparticles, magnetosomes, attract attention because of their magnetic characteristics and potential applications. The aim of the present study was to develop and characterize novel magnetosomes, which were extracted from magnetotactic bacteria, purified to produce apyrogen magnetosome minerals, and then coated with Chitosan, Neridronate, or Polyethyleneimine. It yielded stable magnetosomes designated as M-Chi, M-Neri, and M-PEI, respectively. Nanoparticle biocompatibility was evaluated on mouse fibroblast cells (3T3), mouse glioblastoma cells (GL-261) and rat glioblastoma cells (RG-2). We also tested these nanoparticles for magnetic hyperthermia treatment of tumor in vitro on two tumor cell lines GL-261 and RG-2 under the application of an alternating magnetic field. Heating, efficacy and internalization properties were then evaluated. RESULTS: Nanoparticles coated with chitosan, polyethyleneimine and neridronate are apyrogen, biocompatible and stable in aqueous suspension. The presence of a thin coating in M-Chi and M-PEI favors an arrangement in chains of the magnetosomes, similar to that observed in magnetosomes directly extracted from magnetotactic bacteria, while the thick matrix embedding M-Neri leads to structures with an average thickness of 3.5 µm per magnetosome mineral. In the presence of GL-261 cells and upon the application of an alternating magnetic field, M-PEI and M-Chi lead to the highest specific absorption rates of 120-125 W/g . Furthermore, while M-Chi lead to rather low rates of cellular internalization, M-PEI strongly associate to cells, a property modulated by the application of an alternating magnetic field. CONCLUSIONS: Coating of purified magnetosome minerals can therefore be chosen to control the interactions of nanoparticles with cells, organization of the minerals, as well as heating and cytotoxicity properties, which are important parameters to be considered in the design of a magnetic hyperthermia treatment of tumor.
[Mh] Termos MeSH primário: Materiais Revestidos Biocompatíveis/química
Materiais Revestidos Biocompatíveis/uso terapêutico
Glioma/terapia
Magnetossomos/química
Nanopartículas/química
Nanopartículas/uso terapêutico
[Mh] Termos MeSH secundário: Células 3T3
Animais
Linhagem Celular Tumoral
Quitosana/química
Quitosana/uso terapêutico
Difosfonatos/química
Difosfonatos/uso terapêutico
Hipertermia Induzida
Campos Magnéticos
Magnetospirillum/química
Camundongos
Polietilenoimina/química
Polietilenoimina/uso terapêutico
Ratos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Coated Materials, Biocompatible); 0 (Diphosphonates); 79778-41-9 (6-amino-1-hydroxyhexane-1,1-diphosphonate); 9002-98-6 (Polyethyleneimine); 9012-76-4 (Chitosan)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171113
[Lr] Data última revisão:
171113
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171019
[St] Status:MEDLINE
[do] DOI:10.1186/s12951-017-0293-2


  3 / 217 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28793218
[Au] Autor:Ghaisari S; Winklhofer M; Strauch P; Klumpp S; Faivre D
[Ad] Endereço:Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
[Ti] Título:Magnetosome Organization in Magnetotactic Bacteria Unraveled by Ferromagnetic Resonance Spectroscopy.
[So] Source:Biophys J;113(3):637-644, 2017 Aug 08.
[Is] ISSN:1542-0086
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Magnetotactic bacteria form assemblies of magnetic nanoparticles called magnetosomes. These magnetosomes are typically arranged in chains, but other forms of assemblies such as clusters can be observed in some species and genetic mutants. As such, the bacteria have developed as a model for the understanding of how organization of particles can influence the magnetic properties. Here, we use ferromagnetic resonance spectroscopy to measure the magnetic anisotropies in different strains of Magnetosprillum gryphiswaldense MSR-1, a bacterial species that is amendable to genetic mutations. We combine our experimental results with a model describing the spectra. The model includes chain imperfections and misalignments following a Fisher distribution function, in addition to the intrinsic magnetic properties of the magnetosomes. Therefore, by applying the model to analyze the ferromagnetic resonance data, the distribution of orientations in the bulk sample can be retrieved in addition to the average magnetosome arrangement. In this way, we quantitatively characterize the magnetosome arrangement in both wild-type cells and ΔmamJ mutants, which exhibit differing magnetosome organization.
[Mh] Termos MeSH primário: Magnetossomos/metabolismo
Magnetospirillum/citologia
[Mh] Termos MeSH secundário: Espectroscopia de Ressonância Magnética
Magnetospirillum/genética
Mutação
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170831
[Lr] Data última revisão:
170831
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170810
[St] Status:MEDLINE


  4 / 217 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28283003
[Au] Autor:Wang C; Sun G; Wang Y; Kong N; Chi Y; Yang L; Xin Q; Teng Z; Wang X; Wen Y; Li Y; Xia G
[Ad] Endereço:a State Key Laboratories for Agrobiotechnology and College of Biological Sciences, China Agricultural University , Beijing , China.
[Ti] Título:Bacterial magnetic particles improve testes-mediated transgene efficiency in mice.
[So] Source:Drug Deliv;24(1):651-659, 2017 Nov.
[Is] ISSN:1521-0464
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Nano-scaled materials have been proved to be ideal DNA carriers for transgene. Bacterial magnetic particles (BMPs) help to reduce the toxicity of polyethylenimine (PEI), an efficient gene-transferring agent, and assist tissue transgene ex vivo. Here, the effectiveness of the BMP-PEI complex-conjugated foreign DNAs (BPDs) in promoting testes-mediated gene transfer (TMGT) in mouse was compared with that of liposome-conjugated foreign DNAs. The results proved that through testes injection, the clusters of BPDs successfully reached the cytoplasm and the nuclear of spermatogenesis cell, and expressed in testes of transgene founder mice. Additionally, the ratio of founder mice obtained from BPDs (88%) is about 3 times higher than the control (25%) (p < 0.05). Interestingly, the motility of sperms recovered from epididymis of the founder mice from BPD group were significantly improved, as compared with the control (p < 0.01). Based on classic breeding, the ratio of transgene mice within the first filial was significantly higher in BPDs compared with the control (73.8% versus 11.6%, p < 0.05). TMGT in this study did not produce visible histological changes in the testis. In conclusion, nano-scaled BPDs could be an alternative strategy for efficiently producing transgene mice in vivo.
[Mh] Termos MeSH primário: Técnicas de Transferência de Genes
Proteínas de Fluorescência Verde/biossíntese
Proteínas de Fluorescência Verde/genética
Magnetossomos/genética
Magnetospirillum/genética
Espermatozoides/metabolismo
Testículo/metabolismo
Transgenes
[Mh] Termos MeSH secundário: Animais
Efeito Fundador
Regulação da Expressão Gênica
Genótipo
Iminas/química
Iminas/metabolismo
Lipossomos
Magnetossomos/metabolismo
Magnetospirillum/metabolismo
Masculino
Camundongos
Camundongos Transgênicos
Fenótipo
Polietilenos/química
Polietilenos/metabolismo
Motilidade Espermática
Espermatogênese
Testículo/citologia
Fatores de Tempo
[Pt] Tipo de publicação:COMPARATIVE STUDY; JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Imines); 0 (Liposomes); 0 (Polyethylenes); 0 (poly(ethylene imine)); 147336-22-9 (Green Fluorescent Proteins)
[Em] Mês de entrada:1703
[Cu] Atualização por classe:170321
[Lr] Data última revisão:
170321
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170312
[St] Status:MEDLINE
[do] DOI:10.1080/10717544.2017.1293195


  5 / 217 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28182541
[Au] Autor:Mo H; Liu L; Zhao J
[Ti] Título:A New Magnetotactic Bacteria Optimization Algorithm Based on Moment Migration.
[So] Source:IEEE/ACM Trans Comput Biol Bioinform;14(1):15-26, 2017 Jan-Feb.
[Is] ISSN:1557-9964
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Magnetotactic bacteria is a kind of polyphyletic group of prokaryotes with the characteristics of magnetotaxis that make them orient and swim along geomagnetic field lines. Its distinct biology characteristics are useful to design new optimization technology. In this paper, a new bionic optimization algorithm named Magnetotactic Bacteria Moment Migration Algorithm (MBMMA) is proposed. In the proposed algorithm, the moments of a chain of magnetosomes are considered as solutions. The moments of relative good solutions can migrate each other to enhance the diversity of the MBMMA. It is compared with variants of PSO on standard functions problems. The experiment results show that the MBMMA is effective in solving optimization problems. It shows better or competitive performance compared with the variants of PSO on most of the tested functions in this paper.
[Mh] Termos MeSH primário: Algoritmos
Biomimética/métodos
Magnetossomos/fisiologia
Magnetospirillum/fisiologia
Interações Microbianas/fisiologia
Modelos Biológicos
[Mh] Termos MeSH secundário: Simulação por Computador
Modelos Estatísticos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171002
[Lr] Data última revisão:
171002
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170210
[St] Status:MEDLINE
[do] DOI:10.1109/TCBB.2015.2453949


  6 / 217 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28125741
[Au] Autor:Shimoshige H; Nakajima Y; Kobayashi H; Yanagisawa K; Nagaoka Y; Shimamura S; Mizuki T; Inoue A; Maekawa T
[Ad] Endereço:Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan.
[Ti] Título:Formation of Core-Shell Nanoparticles Composed of Magnetite and Samarium Oxide in Magnetospirillum magneticum Strain RSS-1.
[So] Source:PLoS One;12(1):e0170932, 2017.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Magnetotactic bacteria (MTB) synthesize magnetosomes composed of membrane-enveloped magnetite (Fe3O4) or greigite (Fe3S4) particles in the cells. Recently, several studies have shown some possibilities of controlling the biomineralization process and altering the magnetic properties of magnetosomes by adding some transition metals to the culture media under various environmental conditions. Here, we successfully grow Magnetospirillum magneticum strain RSS-1, which are isolated from a freshwater environment, and find that synthesis of magnetosomes are encouraged in RSS-1 in the presence of samarium and that each core magnetic crystal composed of magnetite is covered with a thin layer of samarium oxide (Sm2O3). The present results show some possibilities of magnetic recovery of transition metals and synthesis of some novel structures composed of magnetic particles and transition metals utilizing MTB.
[Mh] Termos MeSH primário: Óxido Ferroso-Férrico/análise
Magnetossomos/química
Magnetospirillum
Nanopartículas/química
Óxidos/análise
Samário/análise
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Oxides); 42OD65L39F (Samarium); 91N8739X2N (samarium oxide); XM0M87F357 (Ferrosoferric Oxide)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170814
[Lr] Data última revisão:
170814
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170127
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0170932


  7 / 217 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28120460
[Au] Autor:Leão P; Chen YR; Abreu F; Wang M; Zhang WJ; Zhou K; Xiao T; Wu LF; Lins U
[Ad] Endereço:Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
[Ti] Título:Ultrastructure of ellipsoidal magnetotactic multicellular prokaryotes depicts their complex assemblage and cellular polarity in the context of magnetotaxis.
[So] Source:Environ Microbiol;19(6):2151-2163, 2017 Jun.
[Is] ISSN:1462-2920
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Magnetotactic multicellular prokaryotes (MMPs) consist of unique microorganisms formed by genetically identical Gram-negative bacterial that live as a single individual capable of producing magnetic nano-particles called magnetosomes. Two distinct morphotypes of MMPs are known: spherical MMPs (sMMPs) and ellipsoidal MMPs (eMMPs). sMMPs have been extensively characterized, but less information exists for eMMPs. Here, we report the ultrastructure and organization as well as gene clusters responsible for magnetosome and flagella biosynthesis in the magnetite magnetosome producer eMMP Candidatus Magnetananas rongchenensis. Transmission electron microscopy and focused ion beam scanning electron microscopy (FIB-SEM) 3D reconstruction reveal that cells with a conspicuous core-periphery polarity were organized around a central space. Magnetosomes were organized in multiple chains aligned along the periphery of each cell. In the partially sequenced genome, magnetite-related mamAB gene and mad gene clusters were identified. Two cell morphologies were detected: irregular elliptical conical 'frustum-like' (IECF) cells and H-shaped cells. IECF cells merge to form H-shaped cells indicating a more complex structure and possibly a distinct evolutionary position of eMMPs when compared with sMMPs considering multicellularity.
[Mh] Termos MeSH primário: Deltaproteobacteria/genética
Deltaproteobacteria/ultraestrutura
Flagelos/genética
Flagelos/ultraestrutura
Magnetossomos/genética
Magnetossomos/ultraestrutura
[Mh] Termos MeSH secundário: Sequência de Bases
Óxido Ferroso-Férrico
Magnetismo
Magnetossomos/metabolismo
Microscopia Eletrônica de Transmissão
Família Multigênica
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
XM0M87F357 (Ferrosoferric Oxide)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171031
[Lr] Data última revisão:
171031
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170126
[St] Status:MEDLINE
[do] DOI:10.1111/1462-2920.13677


  8 / 217 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28093197
[Au] Autor:Marcano L; García-Prieto A; Muñoz D; Fernández Barquín L; Orue I; Alonso J; Muela A; Fdez-Gubieda ML
[Ad] Endereço:Dpto. de Electricidad y Electrónica, Universidad del País Vasco - UPV/EHU, Leioa 48940, Spain.
[Ti] Título:Influence of the bacterial growth phase on the magnetic properties of magnetosomes synthesized by Magnetospirillum gryphiswaldense.
[So] Source:Biochim Biophys Acta;1861(6):1507-1514, 2017 06.
[Is] ISSN:0006-3002
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:BACKGROUND: The magnetosome biosynthesis is a genetically controlled process but the physical properties of the magnetosomes can be slightly tuned by modifying the bacterial growth conditions. METHODS: We designed two time-resolved experiments in which iron-starved bacteria at the mid-logarithmic phase are transferred to Fe-supplemented medium to induce the magnetosomes biogenesis along the exponential growth or at the stationary phase. We used flow cytometry to determine the cell concentration, transmission electron microscopy to image the magnetosomes, DC and AC magnetometry methods for the magnetic characterization, and X-ray absorption spectroscopy to analyze the magnetosome structure. RESULTS: When the magnetosomes synthesis occurs during the exponential growth phase, they reach larger sizes and higher monodispersity, displaying a stoichiometric magnetite structure, as fingerprinted by the well defined Verwey temperature. On the contrary, the magnetosomes synthesized at the stationary phase reach smaller sizes and display a smeared Verwey transition, that suggests that these magnetosomes may deviate slightly from the perfect stoichiometry. CONCLUSIONS: Magnetosomes magnetically closer to stoichiometric magnetite are obtained when bacteria start synthesizing them at the exponential growth phase rather than at the stationary phase. GENERAL SIGNIFICANCE: The growth conditions influence the final properties of the biosynthesized magnetosomes. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
[Mh] Termos MeSH primário: Magnetossomos/metabolismo
Magnetospirillum/crescimento & desenvolvimento
Magnetospirillum/metabolismo
[Mh] Termos MeSH secundário: Citometria de Fluxo
Nanopartículas de Magnetita/química
Nanopartículas de Magnetita/ultraestrutura
Magnetossomos/química
Magnetossomos/ultraestrutura
Magnetospirillum/ultraestrutura
Microscopia Eletrônica de Transmissão
Estrutura Molecular
Tamanho da Partícula
Fatores de Tempo
Espectroscopia por Absorção de Raios X
[Pt] Tipo de publicação:COMPARATIVE STUDY; JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Magnetite Nanoparticles)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171016
[Lr] Data última revisão:
171016
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170118
[St] Status:MEDLINE


  9 / 217 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27930882
[Au] Autor:Barber-Zucker S; Zarivach R
[Ad] Endereço:Department of Life Sciences, the National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev , Beer Sheva, 8410501, Israel.
[Ti] Título:A Look into the Biochemistry of Magnetosome Biosynthesis in Magnetotactic Bacteria.
[So] Source:ACS Chem Biol;12(1):13-22, 2017 01 20.
[Is] ISSN:1554-8937
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Magnetosomes are protein-rich membrane organelles that encapsulate magnetite or greigite and whose chain alignment enables magnetotactic bacteria (MTB) to sense the geomagnetic field. As these bacteria synthesize uniform magnetic particles, their biomineralization mechanism is of great interest among researchers from different fields, from material engineering to medicine. Both magnetosome formation and magnetic particle synthesis are highly controlled processes that can be divided into several crucial steps: membrane invagination from the inner-cell membrane, protein sorting, the magnetosomes' arrangement into chains, iron transport, chemical environment regulation of the magnetosome lumen, magnetic particle nucleation, and finally crystal growth, size, and morphology control. This complex system involves an ensemble of unique proteins that participate in different stages during magnetosome formation, some of which were extensively studied in recent years. Here, we present the current knowledge on magnetosome biosynthesis with a focus on the different proteins and the main biochemical pathways along this process.
[Mh] Termos MeSH primário: Magnetossomos/metabolismo
Proteobactérias/metabolismo
[Mh] Termos MeSH secundário: Proteínas de Bactérias/análise
Proteínas de Bactérias/metabolismo
Magnetossomos/química
Magnetossomos/ultraestrutura
Magnetospirillum/química
Magnetospirillum/citologia
Magnetospirillum/metabolismo
Modelos Moleculares
Proteobactérias/química
Proteobactérias/citologia
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T; REVIEW
[Nm] Nome de substância:
0 (Bacterial Proteins)
[Em] Mês de entrada:1702
[Cu] Atualização por classe:170222
[Lr] Data última revisão:
170222
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161209
[St] Status:MEDLINE
[do] DOI:10.1021/acschembio.6b01000


  10 / 217 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27902881
[Au] Autor:Ji B; Zhang SD; Zhang WJ; Rouy Z; Alberto F; Santini CL; Mangenot S; Gagnot S; Philippe N; Pradel N; Zhang L; Tempel S; Li Y; Médigue C; Henrissat B; Coutinho PM; Barbe V; Talla E; Wu LF
[Ad] Endereço:Aix Marseille Univ, CNRS, LCB, Marseille, France.
[Ti] Título:The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of Proteobacteria.
[So] Source:Environ Microbiol;19(3):1103-1119, 2017 Mar.
[Is] ISSN:1462-2920
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Magnetotactic bacteria (MTB) are a group of phylogenetically and physiologically diverse Gram-negative bacteria that synthesize intracellular magnetic crystals named magnetosomes. MTB are affiliated with three classes of Proteobacteria phylum, Nitrospirae phylum, Omnitrophica phylum and probably with the candidate phylum Latescibacteria. The evolutionary origin and physiological diversity of MTB compared with other bacterial taxonomic groups remain to be illustrated. Here, we analysed the genome of the marine magneto-ovoid strain MO-1 and found that it is closely related to Magnetococcus marinus MC-1. Detailed analyses of the ribosomal proteins and whole proteomes of 390 genomes reveal that, among the Proteobacteria analysed, only MO-1 and MC-1 have coding sequences (CDSs) with a similarly high proportion of origins from Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria and Gammaproteobacteria. Interestingly, a comparative metabolic network analysis with anoxic network enzymes from sequenced MTB and non-MTB successfully allows the eventual prediction of an organism with a metabolic profile compatible for magnetosome production. Altogether, our genomic analysis reveals multiple origins of MO-1 and M. marinus MC-1 genomes and suggests a metabolism-restriction model for explaining whether a bacterium could become an MTB upon acquisition of magnetosome encoding genes.
[Mh] Termos MeSH primário: Genoma Bacteriano
Magnetossomos
Proteobactérias/classificação
Proteobactérias/genética
[Mh] Termos MeSH secundário: Sequência de Bases
Deltaproteobacteria/genética
Evolução Molecular
Magnetossomos/genética
Filogenia
Proteobactérias/ultraestrutura
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170822
[Lr] Data última revisão:
170822
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161201
[St] Status:MEDLINE
[do] DOI:10.1111/1462-2920.13637



página 1 de 22 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde