Base de dados : MEDLINE
Pesquisa : A11.450 [Categoria DeCS]
Referências encontradas : 8175 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 818 ir para página                         

  1 / 8175 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29202688
[Au] Autor:Abrahamian M; Kagda M; Ah-Fong AMV; Judelson HS
[Ad] Endereço:Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
[Ti] Título:Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria.
[So] Source:BMC Evol Biol;17(1):241, 2017 Dec 04.
[Is] ISSN:1471-2148
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:BACKGROUND: An important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles. Glycolysis in eukaryotes is described as a cytosolic process. The universality of this canon has been challenged by recent genome data that suggest that some glycolytic enzymes made by stramenopiles bear mitochondrial targeting peptides. RESULTS: Mining of oomycete, diatom, and brown algal genomes indicates that stramenopiles encode two forms of enzymes for the second half of glycolysis, one with and the other without mitochondrial targeting peptides. The predicted mitochondrial targeting was confirmed by using fluorescent tags to localize phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase in Phytophthora infestans, the oomycete that causes potato blight. A genome-wide search for other enzymes with atypical mitochondrial locations identified phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which form a pathway for generating serine from the glycolytic intermediate 3-phosphoglycerate. Fluorescent tags confirmed the delivery of these serine biosynthetic enzymes to P. infestans mitochondria. A cytosolic form of this serine biosynthetic pathway, which occurs in most eukaryotes, is missing from oomycetes and most other stramenopiles. The glycolysis and serine metabolism pathways of oomycetes appear to be mosaics of enzymes with different ancestries. While some of the noncanonical oomycete mitochondrial enzymes have the closest affinity in phylogenetic analyses with proteins from other stramenopiles, others cluster with bacterial, plant, or animal proteins. The genes encoding the mitochondrial phosphoglycerate kinase and serine-forming enzymes are physically linked on oomycete chromosomes, which suggests a shared origin. CONCLUSIONS: Stramenopile metabolism appears to have been shaped through the acquisition of genes by descent and lateral or endosymbiotic gene transfer, along with the targeting of the proteins to locations that are novel compared to other eukaryotes. Colocalization of the glycolytic and serine biosynthesis enzymes in mitochondria is apparently necessary since they share a common intermediate. The results indicate that descriptions of metabolism in textbooks do not cover the full diversity of eukaryotic biology.
[Mh] Termos MeSH primário: Evolução Biológica
Células Eucarióticas/metabolismo
Glicólise
Mitocôndrias/metabolismo
Serina/biossíntese
Estramenópilas/enzimologia
Estramenópilas/metabolismo
[Mh] Termos MeSH secundário: Animais
Citosol
Genes
Mitocôndrias/genética
Oomicetos/metabolismo
Fosforilação
Filogenia
Phytophthora infestans/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
452VLY9402 (Serine)
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180309
[Lr] Data última revisão:
180309
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171206
[St] Status:MEDLINE
[do] DOI:10.1186/s12862-017-1087-8


  2 / 8175 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29371626
[Au] Autor:Carradec Q; Pelletier E; Da Silva C; Alberti A; Seeleuthner Y; Blanc-Mathieu R; Lima-Mendez G; Rocha F; Tirichine L; Labadie K; Kirilovsky A; Bertrand A; Engelen S; Madoui MA; Méheust R; Poulain J; Romac S; Richter DJ; Yoshikawa G; Dimier C; Kandels-Lewis S; Picheral M; Searson S; Jaillon O; Aury JM; Karsenti E; Sullivan MB; Sunagawa S; Bork P; Not F; Hingamp P; Raes J; Guidi L; Ogata H; de Vargas C; Iudicone D; Bowler C; Wincker P; Tara Oceans Coordinators
[Ad] Endereço:CEA - Institut de Biologie François Jacob, Genoscope, Evry, 91057, France.
[Ti] Título:A global ocean atlas of eukaryotic genes.
[So] Source:Nat Commun;9(1):373, 2018 01 25.
[Is] ISSN:2041-1723
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:While our knowledge about the roles of microbes and viruses in the ocean has increased tremendously due to recent advances in genomics and metagenomics, research on marine microbial eukaryotes and zooplankton has benefited much less from these new technologies because of their larger genomes, their enormous diversity, and largely unexplored physiologies. Here, we use a metatranscriptomics approach to capture expressed genes in open ocean Tara Oceans stations across four organismal size fractions. The individual sequence reads cluster into 116 million unigenes representing the largest reference collection of eukaryotic transcripts from any single biome. The catalog is used to unveil functions expressed by eukaryotic marine plankton, and to assess their functional biogeography. Almost half of the sequences have no similarity with known proteins, and a great number belong to new gene families with a restricted distribution in the ocean. Overall, the resource provides the foundations for exploring the roles of marine eukaryotes in ocean ecology and biogeochemistry.
[Mh] Termos MeSH primário: Organismos Aquáticos
Eucariotos/genética
Células Eucarióticas/metabolismo
Metagenoma
Filogenia
Zooplâncton/genética
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Animais
Atlas como Assunto
Bactérias/classificação
Bactérias/genética
Biodiversidade
Ecossistema
Eucariotos/classificação
Células Eucarióticas/citologia
Metagenômica/métodos
Oceanos e Mares
Fitoplâncton/classificação
Fitoplâncton/genética
Água do Mar
Vírus/classificação
Vírus/genética
Zooplâncton/classificação
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180215
[Lr] Data última revisão:
180215
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180127
[St] Status:MEDLINE
[do] DOI:10.1038/s41467-017-02342-1


  3 / 8175 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29324855
[Au] Autor:Jiménez-López D; Aguilar-Henonin L; González-Prieto JM; Aguilar-Hernández V; Guzmán P
[Ad] Endereço:Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, México.
[Ti] Título:CTLs, a new class of RING-H2 ubiquitin ligases uncovered by YEELL, a motif close to the RING domain that is present across eukaryotes.
[So] Source:PLoS One;13(1):e0190969, 2018.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:RING ubiquitin E3 ligases enclose a RING domain for ubiquitin ligase activity and associated domains and/or conserved motifs outside the RING domain that collectively facilitate their classification and usually reveal some of key information related to mechanism of action. Here we describe a new family of E3 ligases that encodes a RING-H2 domain related in sequence to the ATL and BTL RING-H2 domains. This family, named CTL, encodes a motif designed as YEELL that expands 21 amino acids next to the RING-H2 domain that is present across most eukaryotic lineages. E3 ubiquitin ligase BIG BROTHER is a plant CTL that regulates organ size, and SUMO-targeted ubiquitin E3 ligase RNF111/ARKADIA is a vertebrate CTL. Basal animal and vertebrate, as well as fungi species, encode a single CTL gene that constraints the number of paralogs observed in vertebrates. Conversely, as previously described in ATL and BTL families in plants, CTL genes range from a single copy in green algae and 3 to 5 copies in basal species to 9 to 35 copies in angiosperms. Our analysis describes key structural features of a novel family of E3 ubiquitin ligases as an integral component of the set of core eukaryotic genes.
[Mh] Termos MeSH primário: Motivos de Aminoácidos
Ubiquitina-Proteína Ligases/metabolismo
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Sequência Conservada
Células Eucarióticas
Íntrons
Filogenia
Homologia de Sequência de Aminoácidos
Spliceossomos/genética
Ubiquitina-Proteína Ligases/química
Ubiquitina-Proteína Ligases/classificação
Ubiquitina-Proteína Ligases/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
EC 2.3.2.27 (Ubiquitin-Protein Ligases)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180215
[Lr] Data última revisão:
180215
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180112
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0190969


  4 / 8175 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28460059
[Au] Autor:Nevers Y; Prasad MK; Poidevin L; Chennen K; Allot A; Kress A; Ripp R; Thompson JD; Dollfus H; Poch O; Lecompte O
[Ad] Endereço:Complex Systems and Translational Bioinformatics, ICube UMR 7357, Université de Strasbourg, Fédération de Médecine Translationnelle, Strasbourg, France.
[Ti] Título:Insights into Ciliary Genes and Evolution from Multi-Level Phylogenetic Profiling.
[So] Source:Mol Biol Evol;34(8):2016-2034, 2017 Aug 01.
[Is] ISSN:1537-1719
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Cilia (flagella) are important eukaryotic organelles, present in the Last Eukaryotic Common Ancestor, and are involved in cell motility and integration of extracellular signals. Ciliary dysfunction causes a class of genetic diseases, known as ciliopathies, however current knowledge of the underlying mechanisms is still limited and a better characterization of genes is needed. As cilia have been lost independently several times during evolution and they are subject to important functional variation between species, ciliary genes can be investigated through comparative genomics. We performed phylogenetic profiling by predicting orthologs of human protein-coding genes in 100 eukaryotic species. The analysis integrated three independent methods to predict a consensus set of 274 ciliary genes, including 87 new promising candidates. A fine-grained analysis of the phylogenetic profiles allowed a partitioning of ciliary genes into modules with distinct evolutionary histories and ciliary functions (assembly, movement, centriole, etc.) and thus propagation of potential annotations to previously undocumented genes. The cilia/basal body localization was experimentally confirmed for five of these previously unannotated proteins (LRRC23, LRRC34, TEX9, WDR27, and BIVM), validating the relevance of our approach. Furthermore, our multi-level analysis sheds light on the core gene sets retained in gamete-only flagellates or Ecdysozoa for instance. By combining gene-centric and species-oriented analyses, this work reveals new ciliary and ciliopathy gene candidates and provides clues about the evolution of ciliary processes in the eukaryotic domain. Additionally, the positive and negative reference gene sets and the phylogenetic profile of human genes constructed during this study can be exploited in future work.
[Mh] Termos MeSH primário: Cílios/genética
Ciliopatias/genética
[Mh] Termos MeSH secundário: Animais
Movimento Celular/genética
Cílios/metabolismo
Ciliopatias/metabolismo
Bases de Dados de Ácidos Nucleicos
Eucariotos
Células Eucarióticas
Evolução Molecular
Flagelos/genética
Flagelos/metabolismo
Genômica
Seres Humanos
Filogenia
Análise de Sequência de DNA/métodos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180201
[Lr] Data última revisão:
180201
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170502
[St] Status:MEDLINE
[do] DOI:10.1093/molbev/msx146


  5 / 8175 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:29283230
[Ti] Título:Canonical and Noncanonical Mechanisms of Glucocorticoid Stress Hormones Action.
[So] Source:Usp Fiziol Nauk;47(3):59-69, 2016 Jul-Sep.
[Is] ISSN:0301-1798
[Cp] País de publicação:Russia (Federation)
[La] Idioma:rus
[Ab] Resumo:Hormones of stress, glucocorticoids, regulate numerous physiological processes and functions. These hormonal effects involve diverse mechanisms of action. Glucocorticoid receptors (GRs) are transcription factors which regulate gene expression by canonical mechanism of the hormone action through interaction with specific nucleotide sequence (GRE) in the regulatory region of the gene. The effects of the canonical mechanism develop for several hours. Non-genomic rapid effects of the hormone emerged in seconds- minuets and supposed to be associated with yet not identified receptor in the plasma membrane. In addition to these slow and rapid hormonal actions, one more slow non-canonical mechanism of glucocorticoid action become increasingly evident. This mechanism is based on protein-protein interactions of GRs with other transcription factors. The main modern concepts of canonical, non-canonical and membrane mechanisms of hormone action are discussed in the review.
[Mh] Termos MeSH primário: Membrana Celular/metabolismo
Células Eucarióticas/metabolismo
Glucocorticoides/metabolismo
NF-kappa B/metabolismo
Receptores de Glucocorticoides/metabolismo
Fator de Transcrição AP-1/metabolismo
[Mh] Termos MeSH secundário: Animais
Células Eucarióticas/citologia
Regulação da Expressão Gênica
Glucocorticoides/genética
Seres Humanos
NF-kappa B/genética
Ligação Proteica
Mapeamento de Interação de Proteínas
Receptores de Glucocorticoides/genética
Elementos de Resposta
Transdução de Sinais
Estresse Fisiológico
Fatores de Tempo
Fator de Transcrição AP-1/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Glucocorticoids); 0 (NF-kappa B); 0 (Receptors, Glucocorticoid); 0 (Transcription Factor AP-1)
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180116
[Lr] Data última revisão:
180116
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171229
[St] Status:MEDLINE


  6 / 8175 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:29283227
[Au] Autor:Kolesnikov SS; Bystrova MF
[Ti] Título:Cyclic AMP: Second Messenger as the First Messenger.
[So] Source:Usp Fiziol Nauk;47(3):3-16, 2016 Jul-Sep.
[Is] ISSN:0301-1798
[Cp] País de publicação:Russia (Federation)
[La] Idioma:rus
[Ab] Resumo:Cell-to-cell communications and autocrine/paracrine regulations are mediated by an extracellular signaling network involving secretion of a variety of different factors, hormones, neurotransmitters, and other signaling molecules that are recognized in an extracellular medium by multiple molecular receptors operating in the plasma membrane of cells. Most of plasma membrane receptors belong to the superfamily of heptahelical receptors, many of which are coupled by G-proteins to adenylate cyclase responsible for cAMP production in the cell cytoplasm. The canonical role of cAMP in cell physiology is to serve as a second messenger and universal regulator of intracellular processes. Meanwhile, increasing body of evidence leaves little doubts that stimulated cells can release cAMP into intercellular space, where it may serve as signaling molecule in cell-to-cell communications and autocrine regulations. This review considers the basic concept on mechanisms of intracellular and extracellular signaling with cAMP as the second and first messenger.
[Mh] Termos MeSH primário: Adenilil Ciclases/metabolismo
AMP Cíclico/metabolismo
Células Eucarióticas/metabolismo
Receptores de Superfície Celular/metabolismo
Sistemas do Segundo Mensageiro/genética
[Mh] Termos MeSH secundário: Adenilil Ciclases/genética
Animais
Comunicação Celular
Membrana Celular/metabolismo
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo
Células Eucarióticas/citologia
Espaço Extracelular/metabolismo
Regulação da Expressão Gênica
Hormônios/genética
Hormônios/metabolismo
Seres Humanos
Neurotransmissores/genética
Neurotransmissores/metabolismo
Receptores de Superfície Celular/genética
Transdução de Sinais
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Hormones); 0 (Neurotransmitter Agents); 0 (Receptors, Cell Surface); E0399OZS9N (Cyclic AMP); EC 3.1.4.35 (Cyclic Nucleotide Phosphodiesterases, Type 6); EC 4.6.1.1 (Adenylyl Cyclases)
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180116
[Lr] Data última revisão:
180116
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171229
[St] Status:MEDLINE


  7 / 8175 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29286727
[Au] Autor:Segota I; Franck C
[Ad] Endereço:Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca 14853, USA.
[Ti] Título:Extracellular Processing of Molecular Gradients by Eukaryotic Cells Can Improve Gradient Detection Accuracy.
[So] Source:Phys Rev Lett;119(24):248101, 2017 Dec 15.
[Is] ISSN:1079-7114
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Eukaryotic cells sense molecular gradients by measuring spatial concentration variation through the difference in the number of occupied receptors to which molecules can bind. They also secrete enzymes that degrade these molecules, and it is presently not well understood how this affects the local gradient perceived by cells. Numerical and analytical results show that these enzymes can substantially increase the signal-to-noise ratio of the receptor difference and allow cells to respond to a much broader range of molecular concentrations and gradients than they would without these enzymes.
[Mh] Termos MeSH primário: AMP Cíclico/metabolismo
Células Eucarióticas/metabolismo
Modelos Biológicos
Diester Fosfórico Hidrolases/metabolismo
[Mh] Termos MeSH secundário: Ácido Aspártico Endopeptidases/metabolismo
Quimiotaxia
Dictyostelium/enzimologia
Dictyostelium/metabolismo
Difusão
Células Eucarióticas/citologia
Células Eucarióticas/enzimologia
Saccharomyces cerevisiae/enzimologia
Saccharomyces cerevisiae/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Saccharomyces cerevisiae Proteins); E0399OZS9N (Cyclic AMP); EC 3.1.4.- (Phosphoric Diester Hydrolases); EC 3.4.23.- (Aspartic Acid Endopeptidases); EC 3.4.23.- (BAR1 protein, S cerevisiae)
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180109
[Lr] Data última revisão:
180109
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171230
[St] Status:MEDLINE
[do] DOI:10.1103/PhysRevLett.119.248101


  8 / 8175 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28988953
[Au] Autor:de Poot SAH; Tian G; Finley D
[Ad] Endereço:Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
[Ti] Título:Meddling with Fate: The Proteasomal Deubiquitinating Enzymes.
[So] Source:J Mol Biol;429(22):3525-3545, 2017 Nov 10.
[Is] ISSN:1089-8638
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Three deubiquitinating enzymes-Rpn11, Usp14, and Uch37-are associated with the proteasome regulatory particle. These enzymes allow proteasomes to remove ubiquitin from substrates before they are translocated into the core particle to be degraded. Although the translocation channel is too narrow for folded proteins, the force of translocation unfolds them mechanically. As translocation proceeds, ubiquitin chains bound to substrate are drawn to the channel's entry port, where they can impede further translocation. Rpn11, situated over the port, can remove these chains without compromising degradation because substrates must be irreversibly committed to degradation before Rpn11 acts. This coupling between deubiquitination and substrate degradation is ensured by the Ins-1 loop of Rpn11, which controls ubiquitin access to its catalytic site. In contrast to Rpn11, Usp14 and Uch37 can rescue substrates from degradation by promoting substrate dissociation from the proteasome prior to the commitment step. Uch37 is unique in being a component of both the proteasome and a second multisubunit assembly, the INO80 complex. However, only recruitment into the proteasome activates Uch37. Recruitment to the proteasome likewise activates Usp14. However, the influence of Usp14 on the proteasome depends on the substrate, due to its marked preference for proteins that carry multiple ubiquitin chains. Usp14 exerts complex control over the proteasome, suppressing proteasome activity even when inactive in deubiquitination. A major challenge for the field will be to elucidate the specificities of Rpn11, Usp14, and Uch37 in greater depth, employing not only model in vitro substrates but also their endogenous targets.
[Mh] Termos MeSH primário: Enzimas Desubiquitinantes/metabolismo
Células Eucarióticas/enzimologia
Complexo de Endopeptidases do Proteassoma/metabolismo
[Mh] Termos MeSH secundário: Hidrólise
Transporte Proteico
Proteólise
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
EC 3.4.19.12 (Deubiquitinating Enzymes); EC 3.4.25.1 (Proteasome Endopeptidase Complex)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171113
[Lr] Data última revisão:
171113
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171010
[St] Status:MEDLINE


  9 / 8175 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28986979
[Au] Autor:Baykov AA; Anashkin VA; Salminen A; Lahti R
[Ad] Endereço:Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia.
[Ti] Título:Inorganic pyrophosphatases of Family II-two decades after their discovery.
[So] Source:FEBS Lett;591(20):3225-3234, 2017 Oct.
[Is] ISSN:1873-3468
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Inorganic pyrophosphatases (PPases) convert pyrophosphate (PP ) to phosphate and are present in all cell types. Soluble PPases belong to three nonhomologous families, of which Family II is found in approximately a quarter of prokaryotic organisms, often pathogenic ones. Each subunit of dimeric canonical Family II PPases is formed by two domains connected by a flexible linker, with the active site located between the domains. These enzymes require both magnesium and a transition metal ion (manganese or cobalt) for maximal activity and are the most active (k ≈ 10 s ) among all PPase types. Catalysis by Family II PPases requires four metal ions per substrate molecule, three of which form a unique trimetal center that coordinates the nucleophilic water and converts it to a reactive hydroxide ion. A quarter of Family II PPases contain an autoinhibitory regulatory insert formed by two cystathionine ß-synthase (CBS) domains and one DRTGG domain. Adenine nucleotide binding either activates or inhibits the CBS domain-containing PPases, thereby tuning their activity and, hence, PP levels, in response to changes in cell energy status (ATP/ADP ratio).
[Mh] Termos MeSH primário: Bactérias/enzimologia
Células Eucarióticas/enzimologia
Pirofosfatase Inorgânica/química
Magnésio/química
Subunidades Proteicas/química
[Mh] Termos MeSH secundário: Nucleotídeos de Adenina/química
Nucleotídeos de Adenina/metabolismo
Bactérias/genética
Biocatálise
Domínio Catalítico
Cobalto/química
Cobalto/metabolismo
Células Eucarióticas/citologia
Expressão Gênica
Pirofosfatase Inorgânica/genética
Pirofosfatase Inorgânica/metabolismo
Isoenzimas/química
Isoenzimas/genética
Isoenzimas/metabolismo
Cinética
Magnésio/metabolismo
Manganês/química
Manganês/metabolismo
Modelos Moleculares
Domínios Proteicos
Multimerização Proteica
Estrutura Secundária de Proteína
Estrutura Terciária de Proteína
Subunidades Proteicas/genética
Subunidades Proteicas/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Adenine Nucleotides); 0 (Isoenzymes); 0 (Protein Subunits); 3G0H8C9362 (Cobalt); 42Z2K6ZL8P (Manganese); EC 3.6.1.1 (Inorganic Pyrophosphatase); I38ZP9992A (Magnesium)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171031
[Lr] Data última revisão:
171031
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171008
[St] Status:MEDLINE
[do] DOI:10.1002/1873-3468.12877


  10 / 8175 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28985510
[Au] Autor:Montalbano A; Canver MC; Sanjana NE
[Ad] Endereço:New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA.
[Ti] Título:High-Throughput Approaches to Pinpoint Function within the Noncoding Genome.
[So] Source:Mol Cell;68(1):44-59, 2017 Oct 05.
[Is] ISSN:1097-4164
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas nuclease system is a powerful tool for genome editing, and its simple programmability has enabled high-throughput genetic and epigenetic studies. These high-throughput approaches offer investigators a toolkit for functional interrogation of not only protein-coding genes but also noncoding DNA. Historically, noncoding DNA has lacked the detailed characterization that has been applied to protein-coding genes in large part because there has not been a robust set of methodologies for perturbing these regions. Although the majority of high-throughput CRISPR screens have focused on the coding genome to date, an increasing number of CRISPR screens targeting noncoding genomic regions continue to emerge. Here, we review high-throughput CRISPR-based approaches to uncover and understand functional elements within the noncoding genome and discuss practical aspects of noncoding library design and screen analysis.
[Mh] Termos MeSH primário: Sistemas CRISPR-Cas
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
DNA Intergênico/genética
Endonucleases/genética
Edição de Genes/métodos
Genoma
[Mh] Termos MeSH secundário: Animais
DNA Intergênico/metabolismo
Endonucleases/metabolismo
Células Eucarióticas/citologia
Células Eucarióticas/metabolismo
Engenharia Genética
Biblioteca Genômica
Ensaios de Triagem em Larga Escala
Seres Humanos
RNA Guia/genética
RNA Guia/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (DNA, Intergenic); 0 (RNA, Guide); EC 3.1.- (Endonucleases)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171126
[Lr] Data última revisão:
171126
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171007
[St] Status:MEDLINE



página 1 de 818 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde