Base de dados : MEDLINE
Pesquisa : A13.686 [Categoria DeCS]
Referências encontradas : 989 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 99 ir para página                         

  1 / 989 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28958816
[Au] Autor:Suzuki T; Sato M
[Ad] Endereço:Lab of Developmental Neurobiology, Graduate School of Medical Sciences, Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
[Ti] Título:Inter-progenitor pool wiring: An evolutionarily conserved strategy that expands neural circuit diversity.
[So] Source:Dev Biol;431(2):101-110, 2017 11 15.
[Is] ISSN:1095-564X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Diversification of neuronal types is key to establishing functional variations in neural circuits. The first critical step to generate neuronal diversity is to organize the compartmental domains of developing brains into spatially distinct neural progenitor pools. Neural progenitors in each pool then generate a unique set of diverse neurons through specific spatiotemporal specification processes. In this review article, we focus on an additional mechanism, 'inter-progenitor pool wiring', that further expands the diversity of neural circuits. After diverse types of neurons are generated in one progenitor pool, a fraction of these neurons start migrating toward a remote brain region containing neurons that originate from another progenitor pool. Finally, neurons of different origins are intermingled and eventually form complex but precise neural circuits. The developing cerebral cortex of mammalian brains is one of the best examples of inter-progenitor pool wiring. However, Drosophila visual system development has revealed similar mechanisms in invertebrate brains, suggesting that inter-progenitor pool wiring is an evolutionarily conserved strategy that expands neural circuit diversity. Here, we will discuss how inter-progenitor pool wiring is accomplished in mammalian and fly brain systems.
[Mh] Termos MeSH primário: Evolução Biológica
Células-Tronco Neurais/citologia
Neurônios/citologia
[Mh] Termos MeSH secundário: Animais
Córtex Cerebral/citologia
Drosophila/citologia
Lobo Óptico de Animais não Mamíferos/citologia
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW; RESEARCH SUPPORT, NON-U.S. GOV'T
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171111
[Lr] Data última revisão:
171111
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170930
[St] Status:MEDLINE


  2 / 989 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28533086
[Au] Autor:Ngo KT; Andrade I; Hartenstein V
[Ad] Endereço:Department of Molecular, Cell, and Developmental Biology, United States.
[Ti] Título:Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system: A user's guide to the dynamic morphology of the developing optic lobe.
[So] Source:Dev Biol;428(1):1-24, 2017 08 01.
[Is] ISSN:1095-564X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Visual information processing in animals with large image forming eyes is carried out in highly structured retinotopically ordered neuropils. Visual neuropils in Drosophila form the optic lobe, which consists of four serially arranged major subdivisions; the lamina, medulla, lobula and lobula plate; the latter three of these are further subdivided into multiple layers. The visual neuropils are formed by more than 100 different cell types, distributed and interconnected in an invariant highly regular pattern. This pattern relies on a protracted sequence of developmental steps, whereby different cell types are born at specific time points and nerve connections are formed in a tightly controlled sequence that has to be coordinated among the different visual neuropils. The developing fly visual system has become a highly regarded and widely studied paradigm to investigate the genetic mechanisms that control the formation of neural circuits. However, these studies are often made difficult by the complex and shifting patterns in which different types of neurons and their connections are distributed throughout development. In the present paper we have reconstructed the three-dimensional architecture of the Drosophila optic lobe from the early larva to the adult. Based on specific markers, we were able to distinguish the populations of progenitors of the four optic neuropils and map the neurons and their connections. Our paper presents sets of annotated confocal z-projections and animated 3D digital models of these structures for representative stages. The data reveal the temporally coordinated growth of the optic neuropils, and clarify how the position and orientation of the neuropils and interconnecting tracts (inner and outer optic chiasm) changes over time. Finally, we have analyzed the emergence of the discrete layers of the medulla and lobula complex using the same markers (DN-cadherin, Brp) employed to systematically explore the structure and development of the central brain neuropil. Our work will facilitate experimental studies of the molecular mechanisms regulating neuronal fate and connectivity in the fly visual system, which bears many fundamental similarities with the retina of vertebrates.
[Mh] Termos MeSH primário: Drosophila melanogaster/embriologia
Neurópilo/citologia
Lobo Óptico de Animais não Mamíferos/anatomia & histologia
Lobo Óptico de Animais não Mamíferos/embriologia
[Mh] Termos MeSH secundário: Animais
Olho/embriologia
Larva/crescimento & desenvolvimento
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171111
[Lr] Data última revisão:
171111
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170524
[St] Status:MEDLINE


  3 / 989 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28242614
[Au] Autor:Xu J; Hao X; Yin MX; Lu Y; Jin Y; Xu J; Ge L; Wu W; Ho M; Yang Y; Zhao Y; Zhang L
[Ad] Endereço:State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, Peo
[Ti] Título:Prevention of medulla neuron dedifferentiation by Nerfin-1 requires inhibition of Notch activity.
[So] Source:Development;144(8):1510-1517, 2017 04 15.
[Is] ISSN:1477-9129
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The larval central nervous system comprises the central brain, ventral nerve cord and optic lobe. In these regions, neuroblasts (NBs) divide asymmetrically to self-renew and generate differentiated neurons or glia. To date, mechanisms of preventing neuron dedifferentiation are still unclear, especially in the optic lobe. Here, we show that the zinc-finger transcription factor Nerfin-1 is expressed in early-stage medulla neurons and is essential for maintaining their differentiation. Loss of Nerfin-1 activates Notch signaling, which promotes neuron-to-NB reversion. Repressing Notch signaling largely rescues dedifferentiation in mutant clones. Thus, we conclude that Nerfin-1 represses Notch activity in medulla neurons and prevents them from dedifferentiation.
[Mh] Termos MeSH primário: Diferenciação Celular
Proteínas de Drosophila/antagonistas & inibidores
Proteínas de Drosophila/metabolismo
Drosophila melanogaster/citologia
Drosophila melanogaster/metabolismo
Bulbo/citologia
Neurônios/citologia
Neurônios/metabolismo
Receptores Notch/antagonistas & inibidores
Fatores de Transcrição/metabolismo
[Mh] Termos MeSH secundário: Animais
Carcinogênese/patologia
Desdiferenciação Celular
Técnicas de Silenciamento de Genes
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
Proteínas de Membrana/metabolismo
Lobo Óptico de Animais não Mamíferos/anatomia & histologia
Lobo Óptico de Animais não Mamíferos/citologia
Receptores Notch/metabolismo
Transdução de Sinais
Regulação para Cima
Dedos de Zinco
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Drosophila Proteins); 0 (Intracellular Signaling Peptides and Proteins); 0 (Membrane Proteins); 0 (Receptors, Notch); 0 (Transcription Factors); 0 (delta protein); 0 (nerfin-1 protein, Drosophila); 0 (notch protein, Drosophila)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:171126
[Lr] Data última revisão:
171126
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170301
[St] Status:MEDLINE
[do] DOI:10.1242/dev.141341


  4 / 989 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28123014
[Au] Autor:Liu TH; Chiao CC
[Ad] Endereço:Institute of Molecular Medicine.
[Ti] Título:Mosaic Organization of Body Pattern Control in the Optic Lobe of Squids.
[So] Source:J Neurosci;37(4):768-780, 2017 Jan 25.
[Is] ISSN:1529-2401
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Cephalopods in nature undergo highly dynamic skin coloration changes that allow rapid camouflage and intraspecies communication. The optic lobe is thought to play a key role in controlling the expansion of the chromatophores that generate these diverse body patterns. However, the functional organization of the optic lobe and neural control of the various body patterns by the optic lobe are largely unknown. We applied electrical stimulation within the optic lobe to investigate the neural basis of body patterning in the oval squid, Sepioteuthis lessoniana Most areas in the optic lobe mediated predominately ipsilateral expansion of chromatophores present on the mantle, but not on the head and arms; furthermore, the expanded areas after electrical stimulation were positively correlated with an increase in stimulating voltage and stimulation depth. These results suggest a unilaterally dominant and vertically converged organization of the optic lobe. Furthermore, analyzing 14 of the elicited body pattern components and their corresponding stimulation sites revealed that the same components can be elicited by stimulating different parts of the optic lobe and that various subsets of these components can be coactivated by stimulating the same area. These findings suggest that many body pattern components may have multiple motor units in the optic lobe and that these are organized in a mosaic manner. The multiplicity associated with the nature of the neural controls of these components in the cephalopod brain thus reflects the versatility of the individual components during the generation of diverse body patterns. SIGNIFICANCE STATEMENT: Neural control of the dynamic body patterning of cephalopods for camouflage and intraspecies communication is a fascinating research topic. Previous studies have shown that the optic lobe is the motor command center for dynamic body patterning. However, little is known about its neural organization and the mechanisms underlying its control of body pattern generation. By electrically stimulating the optic lobe of the oval squids and observing their body pattern changes, surprisingly, we found that there is no somatotopic organization of motor units. Instead, many of these components have multiple motor units within the optic lobe and are organized in a mosaic manner. The present work reveals a novel neural control of dynamic body patterning for communication in cephalopods.
[Mh] Termos MeSH primário: Padronização Corporal/fisiologia
Cromatóforos/fisiologia
Decapodiformes/fisiologia
Lobo Óptico de Animais não Mamíferos/fisiologia
[Mh] Termos MeSH secundário: Animais
Decapodiformes/anatomia & histologia
Estimulação Elétrica/métodos
Feminino
Masculino
Lobo Óptico de Animais não Mamíferos/anatomia & histologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170801
[Lr] Data última revisão:
170801
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170127
[St] Status:MEDLINE
[do] DOI:10.1523/JNEUROSCI.0768-16.2016


  5 / 989 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28077877
[Au] Autor:Erclik T; Li X; Courgeon M; Bertet C; Chen Z; Baumert R; Ng J; Koo C; Arain U; Behnia R; del Valle Rodriguez A; Senderowicz L; Negre N; White KP; Desplan C
[Ad] Endereço:Department of Biology, New York University, New York, New York 10003, USA.
[Ti] Título:Integration of temporal and spatial patterning generates neural diversity.
[So] Source:Nature;541(7637):365-370, 2017 01 19.
[Is] ISSN:1476-4687
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:In the Drosophila optic lobes, 800 retinotopically organized columns in the medulla act as functional units for processing visual information. The medulla contains over 80 types of neuron, which belong to two classes: uni-columnar neurons have a stoichiometry of one per column, while multi-columnar neurons contact multiple columns. Here we show that combinatorial inputs from temporal and spatial axes generate this neuronal diversity: all neuroblasts switch fates over time to produce different neurons; the neuroepithelium that generates neuroblasts is also subdivided into six compartments by the expression of specific factors. Uni-columnar neurons are produced in all spatial compartments independently of spatial input; they innervate the neuropil where they are generated. Multi-columnar neurons are generated in smaller numbers in restricted compartments and require spatial input; the majority of their cell bodies subsequently move to cover the entire medulla. The selective integration of spatial inputs by a fixed temporal neuroblast cascade thus acts as a powerful mechanism for generating neural diversity, regulating stoichiometry and the formation of retinotopy.
[Mh] Termos MeSH primário: Padronização Corporal
Diferenciação Celular
Drosophila melanogaster/citologia
Neurogênese
Neurônios/citologia
Lobo Óptico de Animais não Mamíferos/citologia
[Mh] Termos MeSH secundário: Animais
Padronização Corporal/genética
Encéfalo/citologia
Encéfalo/crescimento & desenvolvimento
Encéfalo/metabolismo
Movimento Celular
Drosophila melanogaster/genética
Drosophila melanogaster/crescimento & desenvolvimento
Feminino
Masculino
Células-Tronco Neurais/citologia
Células-Tronco Neurais/metabolismo
Neurogênese/genética
Neurônios/metabolismo
Neurópilo/citologia
Neurópilo/metabolismo
Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento
Lobo Óptico de Animais não Mamíferos/metabolismo
Pupa/citologia
Pupa/genética
Pupa/crescimento & desenvolvimento
Análise Espaço-Temporal
Fatores de Tempo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; RESEARCH SUPPORT, NON-U.S. GOV'T
[Em] Mês de entrada:1704
[Cu] Atualização por classe:170719
[Lr] Data última revisão:
170719
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170113
[St] Status:MEDLINE
[do] DOI:10.1038/nature20794


  6 / 989 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27766649
[Au] Autor:Arendt A; Baz ES; Stengl M
[Ad] Endereço:Animal Physiology, Department of Biology, University of Kassel, 34132, Kassel, Germany.
[Ti] Título:Functions of corazonin and histamine in light entrainment of the circadian pacemaker in the Madeira cockroach, Rhyparobia maderae.
[So] Source:J Comp Neurol;525(5):1250-1272, 2017 Apr 01.
[Is] ISSN:1096-9861
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The circadian pacemaker of the Madeira cockroach, Rhyparobia (Leucophaea) maderae, is located in the accessory medulla (AME). Ipsi- and contralateral histaminergic compound eyes are required for photic entrainment. Light pulses delay locomotor activity rhythm during the early night and advance it during the late night. Thus, different neuronal pathways might relay either light-dependent delays or advances to the clock. Injections of neuroactive substances combined with running-wheel assays suggested that GABA, pigment-dispersing factor, myoinhibitory peptides (MIPs), and orcokinins (ORCs) were part of both entrainment pathways, whereas allatotropin (AT) only delayed locomotor rhythms at the early night. To characterize photic entrainment further, histamine and corazonin were injected. Histamine injections resulted in light-like phase delays and advances, indicating that the neurotransmitter of the compound eyes participates in both entrainment pathways. Because injections of corazonin only advanced during the late subjective night, it was hypothesized that corazonin is only part of the advance pathway. Multiple-label immunocytochemistry in combination with neurobiotin backfills demonstrated that a single cell expressed corazonin in the optic lobes that belonged to the group of medial AME interneurons. It colocalized GABA and MIP but not AT or ORC immunoreactivity. Corazonin-immunoreactive (-ir) terminals overlapped with projections of putatively light-sensitive interneurons from the ipsi- and contralateral compound eye. Thus, we hypothesize that the corazonin-ir medial neuron integrates ipsi- and contralateral light information as part of the phase-advancing light entrainment pathway to the circadian clock. J. Comp. Neurol. 525:1250-1272, 2017. © 2016 Wiley Periodicals, Inc.
[Mh] Termos MeSH primário: Relógios Circadianos/fisiologia
Ritmo Circadiano/fisiologia
Baratas/fisiologia
Histamina/metabolismo
Proteínas de Insetos/metabolismo
Neuropeptídeos/metabolismo
[Mh] Termos MeSH secundário: Animais
Comportamento Animal/fisiologia
Imuno-Histoquímica
Lobo Óptico de Animais não Mamíferos/fisiologia
Estimulação Luminosa
Vias Visuais/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Insect Proteins); 0 (Neuropeptides); 122984-73-0 (corazonin protein, insect); 820484N8I3 (Histamine)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170929
[Lr] Data última revisão:
170929
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161022
[St] Status:MEDLINE
[do] DOI:10.1002/cne.24133


  7 / 989 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:27502554
[Au] Autor:Haag J; Arenz A; Serbe E; Gabbiani F; Borst A
[Ad] Endereço:Max Planck Institute of Neurobiology, Martinsried, Germany.
[Ti] Título:Complementary mechanisms create direction selectivity in the fly.
[So] Source:Elife;5, 2016 Aug 09.
[Is] ISSN:2050-084X
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly's primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection.
[Mh] Termos MeSH primário: Drosophila/fisiologia
Locomoção
Lobo Óptico de Animais não Mamíferos/fisiologia
Desempenho Psicomotor
[Mh] Termos MeSH secundário: Animais
Neurônios/fisiologia
Estimulação Luminosa
Vias Visuais/fisiologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171101
[Lr] Data última revisão:
171101
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160810
[St] Status:MEDLINE


  8 / 989 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27392711
[Au] Autor:Ugajin A; Watanabe T; Uchiyama H; Sasaki T; Yajima S; Ono M
[Ad] Endereço:Laboratory of Applied Entomology and Zoology, Graduate School of Agriculture, Tamagawa University, 6-1-1, Tamagawagakuen, Machida, Tokyo 194-8610, Japan. Electronic address: ugajin@agr.tamagawa.ac.jp.
[Ti] Título:Expression analysis of Egr-1 ortholog in metamorphic brain of honeybee (Apis mellifera L.): Possible evolutionary conservation of roles of Egr in eye development in vertebrates and insects.
[So] Source:Biochem Biophys Res Commun;478(2):1014-9, 2016 09 16.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Specific genes quickly transcribed after extracellular stimuli without de novo protein synthesis are known as immediate early genes (IEGs) and are thought to contribute to learning and memory processes in the mature nervous system of vertebrates. A recent study revealed that the homolog of Early growth response protein-1 (Egr-1), which is one of the best-characterized vertebrate IEGs, shared similar properties as a neural activity-dependent gene in the adult brain of insects. With regard to the roles of vertebrate Egr-1 in neural development, the contribution to the development and growth of visual systems has been reported. However, in insects, the expression dynamics of the Egr-1 homologous gene during neural development remains poorly understood. Our expression analysis demonstrated that AmEgr, a honeybee homolog of Egr-1, was transiently upregulated in the developing brain during the early to mid pupal stages. In situ hybridization and 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry revealed that AmEgr was mainly expressed in post-mitotic cells in optic lobes, the primary visual center of the insect brain. These findings suggest the evolutionarily conserved role of Egr homologs in the development of visual systems in vertebrates and insects.
[Mh] Termos MeSH primário: Abelhas/crescimento & desenvolvimento
Evolução Biológica
Sequência Conservada
Proteína 1 de Resposta de Crescimento Precoce/metabolismo
Olho/crescimento & desenvolvimento
Regulação da Expressão Gênica no Desenvolvimento
Metamorfose Biológica/genética
Vertebrados/genética
[Mh] Termos MeSH secundário: Animais
Abelhas/genética
Encéfalo/citologia
Encéfalo/metabolismo
Proliferação Celular
Proteína 1 de Resposta de Crescimento Precoce/genética
Éxons/genética
Olho/metabolismo
Perfilação da Expressão Gênica
Hibridização In Situ
Lobo Óptico de Animais não Mamíferos/citologia
Lobo Óptico de Animais não Mamíferos/metabolismo
Pupa/metabolismo
Homologia de Sequência de Aminoácidos
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Early Growth Response Protein 1)
[Em] Mês de entrada:1705
[Cu] Atualização por classe:171127
[Lr] Data última revisão:
171127
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160710
[St] Status:MEDLINE


  9 / 989 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:27381228
[Au] Autor:Apitz H; Salecker I
[Ad] Endereço:The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK.
[Ti] Título:Retinal determination genes coordinate neuroepithelial specification and neurogenesis modes in the Drosophila optic lobe.
[So] Source:Development;143(13):2431-42, 2016 07 01.
[Is] ISSN:1477-9129
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Differences in neuroepithelial patterning and neurogenesis modes contribute to area-specific diversifications of neural circuits. In the Drosophila visual system, two neuroepithelia, the outer (OPC) and inner (IPC) proliferation centers, generate neuron subtypes for four ganglia in several ways. Whereas neuroepithelial cells in the medial OPC directly convert into neuroblasts, in an IPC subdomain they generate migratory progenitors by epithelial-mesenchymal transition that mature into neuroblasts in a second proliferative zone. The molecular mechanisms that regulate the identity of these neuroepithelia, including their neurogenesis modes, remain poorly understood. Analysis of Polycomblike revealed that loss of Polycomb group-mediated repression of the Hox gene Abdominal-B (Abd-B) caused the transformation of OPC to IPC neuroepithelial identity. This suggests that the neuroepithelial default state is IPC-like, whereas OPC identity is derived. Ectopic Abd-B blocks expression of the highly conserved retinal determination gene network members Eyes absent (Eya), Sine oculis (So) and Homothorax (Hth). These factors are essential for OPC specification and neurogenesis control. Finally, eya and so are also sufficient to confer OPC-like identity, and, in parallel with hth, the OPC-specific neurogenesis mode on the IPC.
[Mh] Termos MeSH primário: Padronização Corporal/genética
Drosophila melanogaster/genética
Genes de Insetos
Células Neuroepiteliais/metabolismo
Neurogênese/genética
Lobo Óptico de Animais não Mamíferos/embriologia
Lobo Óptico de Animais não Mamíferos/metabolismo
Retina/embriologia
[Mh] Termos MeSH secundário: Animais
Diferenciação Celular/genética
Proliferação Celular
Proteínas de Drosophila/genética
Proteínas de Drosophila/metabolismo
Drosophila melanogaster/citologia
Embrião não Mamífero/metabolismo
Transição Epitelial-Mesenquimal/genética
Testes Genéticos
Mutação/genética
Células Neuroepiteliais/citologia
Lobo Óptico de Animais não Mamíferos/citologia
Retina/metabolismo
Células-Tronco/citologia
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Drosophila Proteins)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:171125
[Lr] Data última revisão:
171125
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160707
[St] Status:MEDLINE
[do] DOI:10.1242/dev.135004


  10 / 989 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:26970623
[Au] Autor:Nériec N; Desplan C
[Ad] Endereço:Center for Genomics & Systems Biology, New York University, Abu Dhabi, UAE; Department of Biology, New York University, New York, USA.
[Ti] Título:From the Eye to the Brain: Development of the Drosophila Visual System.
[So] Source:Curr Top Dev Biol;116:247-71, 2016.
[Is] ISSN:1557-8933
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:How stem cells produce the huge diversity of neurons that form the visual system, and how these cells are assembled in neural circuits are a critical question in developmental neurobiology. Investigations in Drosophila have led to the discovery of several basic principles of neural patterning. In this chapter, we provide an overview of the field by describing the development of the Drosophila visual system, from the embryo to the adult and from the gross anatomy to the cellular level. We then explore the general molecular mechanisms identified that might apply to other neural structures in flies or in vertebrates. Finally, we discuss the major challenges that remain to be addressed in the field.
[Mh] Termos MeSH primário: Encéfalo/embriologia
Drosophila/embriologia
Olho/embriologia
Lobo Óptico de Animais não Mamíferos/embriologia
[Mh] Termos MeSH secundário: Animais
Evolução Biológica
Encéfalo/crescimento & desenvolvimento
Drosophila/crescimento & desenvolvimento
Embrião não Mamífero
Células Neuroepiteliais/fisiologia
Neurônios
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170828
[Lr] Data última revisão:
170828
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160313
[St] Status:MEDLINE



página 1 de 99 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde