Base de dados : MEDLINE
Pesquisa : A16.504.660.750 [Categoria DeCS]
Referências encontradas : 1620 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 162 ir para página                         

  1 / 1620 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28942924
[Au] Autor:Hubaud A; Regev I; Mahadevan L; Pourquié O
[Ad] Endereço:Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch 67400, France; Department of Genetics, Harvard Medical School and Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA.
[Ti] Título:Excitable Dynamics and Yap-Dependent Mechanical Cues Drive the Segmentation Clock.
[So] Source:Cell;171(3):668-682.e11, 2017 Oct 19.
[Is] ISSN:1097-4172
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The periodic segmentation of the vertebrate body axis into somites, and later vertebrae, relies on a genetic oscillator (the segmentation clock) driving the rhythmic activity of signaling pathways in the presomitic mesoderm (PSM). To understand whether oscillations are an intrinsic property of individual cells or represent a population-level phenomenon, we established culture conditions for stable oscillations at the cellular level. This system was used to demonstrate that oscillations are a collective property of PSM cells that can be actively triggered in vitro by a dynamical quorum sensing signal involving Yap and Notch signaling. Manipulation of Yap-dependent mechanical cues is sufficient to predictably switch isolated PSM cells from a quiescent to an oscillatory state in vitro, a behavior reminiscent of excitability in other systems. Together, our work argues that the segmentation clock behaves as an excitable system, introducing a broader paradigm to study such dynamics in vertebrate morphogenesis.
[Mh] Termos MeSH primário: Relógios Biológicos
Transdução de Sinais
[Mh] Termos MeSH secundário: Proteínas Adaptadoras de Transdução de Sinal/metabolismo
Animais
Embrião de Galinha
Embrião de Mamíferos/metabolismo
Embrião não Mamífero/metabolismo
Mesoderma/metabolismo
Camundongos
Morfogênese
Fosfoproteínas/metabolismo
Percepção de Quorum
Somitos/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Adaptor Proteins, Signal Transducing); 0 (Phosphoproteins); 0 (Yap protein, mouse)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171101
[Lr] Data última revisão:
171101
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170926
[St] Status:MEDLINE


  2 / 1620 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28887016
[Au] Autor:Roy SD; Williams VC; Pipalia TG; Li K; Hammond CL; Knappe S; Knight RD; Hughes SM
[Ad] Endereço:Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK.
[Ti] Título:Myotome adaptability confers developmental robustness to somitic myogenesis in response to fibre number alteration.
[So] Source:Dev Biol;431(2):321-335, 2017 11 15.
[Is] ISSN:1095-564X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Balancing the number of stem cells and their progeny is crucial for tissue development and repair. Here we examine how cell numbers and overall muscle size are tightly regulated during zebrafish somitic muscle development. Muscle stem/precursor cell (MPCs) expressing Pax7 are initially located in the dermomyotome (DM) external cell layer, adopt a highly stereotypical distribution and thereafter a proportion of MPCs migrate into the myotome. Regional variations in the proliferation and terminal differentiation of MPCs contribute to growth of the myotome. To probe the robustness of muscle size control and spatiotemporal regulation of MPCs, we compared the behaviour of wild type (wt) MPCs with those in mutant zebrafish that lack the muscle regulatory factor Myod. Myod mutants form one third fewer multinucleate fast muscle fibres than wt and show a significant expansion of the Pax7 MPC population in the DM. Subsequently, myod mutant fibres generate more cytoplasm per nucleus, leading to recovery of muscle bulk. In addition, relative to wt siblings, there is an increased number of MPCs in myod mutants and these migrate prematurely into the myotome, differentiate and contribute to the hypertrophy of existing fibres. Thus, homeostatic reduction of the excess MPCs returns their number to normal levels, but fibre numbers remain low. The GSK3 antagonist BIO prevents MPC migration into the deep myotome, suggesting that canonical Wnt pathway activation maintains the DM in zebrafish, as in amniotes. BIO does not, however, block recovery of the myod mutant myotome, indicating that homeostasis acts on fibre intrinsic growth to maintain muscle bulk. The findings suggest the existence of a critical window for early fast fibre formation followed by a period in which homeostatic mechanisms regulate myotome growth by controlling fibre size. The feedback controls we reveal in muscle help explain the extremely precise grading of myotome size along the body axis irrespective of fish size, nutrition and genetic variation and may form a paradigm for wider matching of organ size.
[Mh] Termos MeSH primário: Desenvolvimento Muscular
Fibras Musculares Esqueléticas/metabolismo
Somitos/metabolismo
Peixe-Zebra/embriologia
[Mh] Termos MeSH secundário: Animais
Diferenciação Celular
Movimento Celular
Núcleo Celular/metabolismo
Proliferação Celular
Quinase 3 da Glicogênio Sintase/metabolismo
Proteínas de Fluorescência Verde/metabolismo
Larva/metabolismo
Fibras Musculares Esqueléticas/citologia
Mutação/genética
Fator de Transcrição PAX7/metabolismo
Somitos/embriologia
Proteínas de Peixe-Zebra/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (PAX7 Transcription Factor); 0 (Zebrafish Proteins); 147336-22-9 (Green Fluorescent Proteins); EC 2.7.11.26 (Glycogen Synthase Kinase 3)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171115
[Lr] Data última revisão:
171115
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170910
[St] Status:MEDLINE


  3 / 1620 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28867488
[Au] Autor:Bonnet A; Lambert G; Ernest S; Dutrieux FX; Coulpier F; Lemoine S; Lobbardi R; Rosa FM
[Ad] Endereço:IBENS, Institut de Biologie de l'Ecole Normale Supérieure, 75005 Paris, France; INSERM U1024, 75005 Paris, France; CNRS UMR 8197, 75005 Paris, France. Electronic address: bonnet.aline@gmail.com.
[Ti] Título:Quaking RNA-Binding Proteins Control Early Myofibril Formation by Modulating Tropomyosin.
[So] Source:Dev Cell;42(5):527-541.e4, 2017 Sep 11.
[Is] ISSN:1878-1551
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Skeletal muscle contraction is mediated by myofibrils, complex multi-molecular scaffolds structured into repeated units, the sarcomeres. Myofibril structure and function have been extensively studied, but the molecular processes regulating its formation within the differentiating muscle cell remain largely unknown. Here we show in zebrafish that genetic interference with the Quaking RNA-binding proteins disrupts the initial steps of myofibril assembly without affecting early muscle differentiation. Using RNA sequencing, we demonstrate that Quaking is required for accumulation of the muscle-specific tropomyosin-3 transcript, tpm3.12. Further functional analyses reveal that Tpm3.12 mediates Quaking control of myofibril formation. Moreover, we identified a Quaking-binding site in the 3' UTR of tpm3.12 transcript, which is required in vivo for tpm3.12 accumulation and myofibril formation. Our work uncovers a Quaking/Tpm3 pathway controlling de novo myofibril assembly. This unexpected developmental role for Tpm3 could be at the origin of muscle defects observed in human congenital myopathies associated with tpm3 mutation.
[Mh] Termos MeSH primário: Miofibrilas/metabolismo
Proteínas de Ligação a RNA/metabolismo
Tropomiosina/metabolismo
Proteínas de Peixe-Zebra/metabolismo
Peixe-Zebra/metabolismo
[Mh] Termos MeSH secundário: Regiões 3' não Traduzidas/genética
Animais
Sítios de Ligação
Diferenciação Celular/genética
Desenvolvimento Embrionário/genética
Regulação da Expressão Gênica no Desenvolvimento
Células Musculares/citologia
Células Musculares/metabolismo
Desenvolvimento Muscular/genética
Miosinas/metabolismo
RNA Mensageiro/genética
RNA Mensageiro/metabolismo
Sarcômeros/metabolismo
Somitos/embriologia
Somitos/metabolismo
Peixe-Zebra/embriologia
Peixe-Zebra/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (3' Untranslated Regions); 0 (RNA, Messenger); 0 (RNA-Binding Proteins); 0 (Tropomyosin); 0 (Zebrafish Proteins); 0 (qk protein, zebrafish); EC 3.6.4.1 (Myosins)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170925
[Lr] Data última revisão:
170925
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170905
[St] Status:MEDLINE


  4 / 1620 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28843494
[Au] Autor:Masselink W; Masaki M; Sieiro D; Marcelle C; Currie PD
[Ad] Endereço:Australian Regenerative Medicine Institute, Level 1, Building 75, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
[Ti] Título:Phosphorylation of Lbx1 controls lateral myoblast migration into the limb.
[So] Source:Dev Biol;430(2):302-309, 2017 10 15.
[Is] ISSN:1095-564X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The migration of limb myogenic precursors from limb level somites to their ultimate site of differentiation in the limb is a paradigmatic example of a set of dynamic and orchestrated migratory cell behaviours. The homeobox containing transcription factor ladybird homeobox 1 (Lbx1) is a central regulator of limb myoblast migration, null mutations of Lbx1 result in severe disruptions to limb muscle formation, particularly in the distal region of the limb in mice (Gross et al., 2000). As such Lbx1 has been hypothesized to control lateral migration of myoblasts into the distal limb anlage. It acts as a core regulator of the limb myoblast migration machinery, controlled by Pax3. A secondary role for Lbx1 in the differentiation and commitment of limb musculature has also been proposed (Brohmann et al., 2000; Uchiyama et al., 2000). Here we show that lateral migration, but not differentiation or commitment of limb myoblasts, is controlled by the phosphorylation of three adjacent serine residues of LBX1. Electroporation of limb level somites in the chick embryo with a dephosphomimetic form of Lbx1 results in a specific defect in the lateral migration of limb myoblasts. Although the initial delamination and migration of myoblasts is unaffected, migration into the distal limb bud is severely disrupted. Interestingly, myoblasts undergo normal differentiation independent of their migratory status, suggesting that the differentiation potential of hypaxial muscle is not regulated by the phosphorylation state of LBX1. Furthermore, we show that FGF8 and ERK mediated signal transduction, both critical regulators of the developing limb bud, have the capacity to induce the phosphorylation of LBX1 at these residues. Overall, this suggests a mechanism whereby the phosphorylation of LBX1, potentially through FGF8 and ERK signalling, controls the lateral migration of myoblasts into the distal limb bud.
[Mh] Termos MeSH primário: Extremidades/embriologia
Mioblastos/citologia
Fatores de Transcrição/fisiologia
Proteínas de Peixe-Zebra/fisiologia
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Animais
Movimento Celular
Células Cultivadas
Embrião de Galinha
MAP Quinases Reguladas por Sinal Extracelular/fisiologia
Fator 8 de Crescimento de Fibroblasto/fisiologia
Seres Humanos
Camundongos
Mutação
Fosforilação/efeitos dos fármacos
Fosfosserina/metabolismo
Processamento de Proteína Pós-Traducional/efeitos dos fármacos
Proteínas Recombinantes/genética
Proteínas Recombinantes/metabolismo
Alinhamento de Sequência
Homologia de Sequência de Aminoácidos
Somitos/citologia
Especificidade da Espécie
Fatores de Transcrição/genética
Peixe-Zebra/genética
Proteínas de Peixe-Zebra/genética
[Pt] Tipo de publicação:COMPARATIVE STUDY; JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Lbx1 protein, zebrafish); 0 (Recombinant Proteins); 0 (Transcription Factors); 0 (Zebrafish Proteins); 148997-75-5 (Fibroblast Growth Factor 8); 17885-08-4 (Phosphoserine); EC 2.7.11.24 (Extracellular Signal-Regulated MAP Kinases)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171111
[Lr] Data última revisão:
171111
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170828
[St] Status:MEDLINE


  5 / 1620 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28811218
[Au] Autor:Hübner K; Grassme KS; Rao J; Wenke NK; Zimmer CL; Korte L; Mu Ller K; Sumanas S; Greber B; Herzog W
[Ad] Endereço:University of Muenster, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Germany.
[Ti] Título:Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1.
[So] Source:Dev Biol;430(1):142-155, 2017 10 01.
[Is] ISSN:1095-564X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:During vertebrate embryogenesis, vascular endothelial cells (ECs) and primitive erythrocytes become specified within close proximity in the posterior lateral plate mesoderm (LPM) from a common progenitor. However, the signaling cascades regulating the specification into either lineage remain largely elusive. Here, we analyze the contribution of ß-catenin dependent Wnt signaling to EC and erythrocyte specification during zebrafish embryogenesis. We generated novel ß-catenin dependent Wnt signaling reporters which, by using destabilized fluorophores (Venus-Pest, dGFP), specifically allow us to detect Wnt signaling responses in narrow time windows as well as in spatially restricted domains, defined by Cre recombinase expression (Tg(axin2 :Venus-Pest) ; Tg(14TCF:loxP-STOP-loxP-dGFP) ). We therefore can detect ß-catenin dependent Wnt signaling activity in a subset of the Fli1a-positive progenitor population. Additionally, we show that mesodermal Wnt3a-mediated signaling via the transcription factor Lef1 positively regulates EC specification (defined by kdrl expression) at the expense of primitive erythrocyte specification (defined by gata1 expression) in zebrafish embryos. Using mesoderm derived from human embryonic stem cells, we identified the same principle of Wnt signaling dependent EC specification in conjunction with auto-upregulation of LEF1. Our data indicate a novel role of ß-catenin dependent Wnt signaling in regulating EC specification during vasculogenesis.
[Mh] Termos MeSH primário: Linhagem da Célula
Células Endoteliais/citologia
Células Endoteliais/metabolismo
Fatores de Transcrição/metabolismo
Via de Sinalização Wnt
Proteínas de Peixe-Zebra/metabolismo
Peixe-Zebra/metabolismo
[Mh] Termos MeSH secundário: Animais
Animais Geneticamente Modificados
Contagem de Células
Diferenciação Celular
Linhagem Celular
Eritrócitos/citologia
Eritrócitos/metabolismo
Células-Tronco Embrionárias Humanas/citologia
Células-Tronco Embrionárias Humanas/metabolismo
Seres Humanos
Mesoderma/citologia
Mesoderma/metabolismo
Modelos Biológicos
Organogênese
Somitos/embriologia
Somitos/metabolismo
Proteína Wnt3A/metabolismo
beta Catenina/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T; RESEARCH SUPPORT, N.I.H., EXTRAMURAL
[Nm] Nome de substância:
0 (Fli1a protein, zebrafish); 0 (LEF1 protein, zebrafish); 0 (Transcription Factors); 0 (Wnt3A Protein); 0 (Zebrafish Proteins); 0 (beta Catenin)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171111
[Lr] Data última revisão:
171111
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170817
[St] Status:MEDLINE


  6 / 1620 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28807896
[Au] Autor:Fu T; Towers M; Placzek MA
[Ad] Endereço:The Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK.
[Ti] Título: progenitors give rise to the chick hypothalamus by rostral and caudal growth and differentiation.
[So] Source:Development;144(18):3278-3288, 2017 09 15.
[Is] ISSN:1477-9129
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Classical descriptions of the hypothalamus divide it into three rostro-caudal domains but little is known about their embryonic origins. To investigate this, we performed targeted fate-mapping, molecular characterisation and cell cycle analyses in the embryonic chick. Presumptive hypothalamic cells derive from the rostral diencephalic ventral midline, lie above the prechordal mesendoderm and express progenitors undergo anisotropic growth: those displaced rostrally differentiate into anterior cells, then those displaced caudally differentiate into mammillary cells. A stable population of progenitors is retained within the tuberal domain; a subset of these gives rise to the tuberal infundibulum - the precursor of the posterior pituitary. Pharmacological approaches reveal that Shh signalling promotes the growth and differentiation of anterior progenitors, and also orchestrates the development of the infundibulum and Rathke's pouch - the precursor of the anterior pituitary. Together, our studies identify a hypothalamic progenitor population defined by and highlight a role for Shh signalling in the integrated development of the hypothalamus and pituitary.
[Mh] Termos MeSH primário: Padronização Corporal
Diferenciação Celular
Fator 10 de Crescimento de Fibroblastos/metabolismo
Hipotálamo/citologia
Hipotálamo/embriologia
Células-Tronco/citologia
[Mh] Termos MeSH secundário: Animais
Anisotropia
Proliferação Celular
Embrião de Galinha
Galinhas
Diencéfalo/embriologia
Endoderma/embriologia
Proteínas Hedgehog/metabolismo
Mesoderma/embriologia
Modelos Biológicos
Sistemas Neurossecretores/metabolismo
Transdução de Sinais
Somitos/embriologia
Somitos/metabolismo
Células-Tronco/metabolismo
Regulação para Cima
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Fibroblast Growth Factor 10); 0 (Hedgehog Proteins)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171126
[Lr] Data última revisão:
171126
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170816
[St] Status:MEDLINE
[do] DOI:10.1242/dev.153379


  7 / 1620 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28807781
[Au] Autor:Ahmed MU; Maurya AK; Cheng L; Jorge EC; Schubert FR; Maire P; Basson MA; Ingham PW; Dietrich S
[Ad] Endereço:King's College London, Dept. of Craniofacial Development and Stem Cell Biology, Floor 27, Guy's Hospital Tower Wing, London SE1 9RT, UK.
[Ti] Título:Engrailed controls epaxial-hypaxial muscle innervation and the establishment of vertebrate three-dimensional mobility.
[So] Source:Dev Biol;430(1):90-104, 2017 10 01.
[Is] ISSN:1095-564X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Chordates are characterised by contractile muscle on either side of the body that promotes movement by side-to-side undulation. In the lineage leading to modern jawed vertebrates (crown group gnathostomes), this system was refined: body muscle became segregated into distinct dorsal (epaxial) and ventral (hypaxial) components that are separately innervated by the medial and hypaxial motors column, respectively, via the dorsal and ventral ramus of the spinal nerves. This allows full three-dimensional mobility, which in turn was a key factor in their evolutionary success. How the new gnathostome system is established during embryogenesis and how it may have evolved in the ancestors of modern vertebrates is not known. Vertebrate Engrailed genes have a peculiar expression pattern as they temporarily demarcate a central domain of the developing musculature at the epaxial-hypaxial boundary. Moreover, they are the only genes known with this particular expression pattern. The aim of this study was to investigate whether Engrailed genes control epaxial-hypaxial muscle development and innervation. Investigating chick, mouse and zebrafish as major gnathostome model organisms, we found that the Engrailed expression domain was associated with the establishment of the epaxial-hypaxial boundary of muscle in all three species. Moreover, the outgrowing epaxial and hypaxial nerves orientated themselves with respect to this Engrailed domain. In the chicken, loss and gain of Engrailed function changed epaxial-hypaxial somite patterning. Importantly, in all animals studied, loss and gain of Engrailed function severely disrupted the pathfinding of the spinal motor axons, suggesting that Engrailed plays an evolutionarily conserved role in the separate innervation of vertebrate epaxial-hypaxial muscle.
[Mh] Termos MeSH primário: Galinhas/metabolismo
Proteínas de Homeodomínio/metabolismo
Movimento
Músculo Esquelético/inervação
Músculo Esquelético/metabolismo
Fatores de Transcrição/metabolismo
Peixe-Zebra/embriologia
Peixe-Zebra/metabolismo
[Mh] Termos MeSH secundário: Animais
Animais Recém-Nascidos
Axônios/metabolismo
Biomarcadores/metabolismo
Padronização Corporal/genética
Regulação da Expressão Gênica no Desenvolvimento
Camundongos
Desenvolvimento Muscular/genética
Mioblastos/citologia
Mioblastos/metabolismo
Fenótipo
Somitos/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Biomarkers); 0 (Homeodomain Proteins); 0 (Transcription Factors); 0 (engrailed homeobox proteins)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171111
[Lr] Data última revisão:
171111
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170816
[St] Status:MEDLINE


  8 / 1620 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28634270
[Au] Autor:Chal J; Pourquié O
[Ad] Endereço:Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
[Ti] Título:Making muscle: skeletal myogenesis and .
[So] Source:Development;144(12):2104-2122, 2017 06 15.
[Is] ISSN:1477-9129
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors .
[Mh] Termos MeSH primário: Desenvolvimento Muscular/fisiologia
Músculo Esquelético/crescimento & desenvolvimento
[Mh] Termos MeSH secundário: Animais
Diferenciação Celular
Reprogramação Celular
Seres Humanos
Mesoderma/citologia
Mesoderma/embriologia
Camundongos
Modelos Biológicos
Fibras Musculares Esqueléticas/citologia
Fibras Musculares Esqueléticas/fisiologia
Músculo Esquelético/citologia
Músculo Esquelético/fisiologia
Mioblastos Esqueléticos/citologia
Mioblastos Esqueléticos/fisiologia
Células-Tronco Pluripotentes/citologia
Células-Tronco Pluripotentes/fisiologia
Somitos/citologia
Somitos/embriologia
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW; RESEARCH SUPPORT, NON-U.S. GOV'T
[Em] Mês de entrada:1709
[Cu] Atualização por classe:171126
[Lr] Data última revisão:
171126
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170622
[St] Status:MEDLINE
[do] DOI:10.1242/dev.151035


  9 / 1620 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28506615
[Au] Autor:Vroomans RMA; Ten Tusscher KHWJ
[Ad] Endereço:Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands. Electronic address: renske.vroomans@gmail.com.
[Ti] Título:Modelling asymmetric somitogenesis: Deciphering the mechanisms behind species differences.
[So] Source:Dev Biol;427(1):21-34, 2017 07 01.
[Is] ISSN:1095-564X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Somitogenesis is one of the major hallmarks of bilateral symmetry in vertebrates. This symmetry is lost when retinoic acid (RA) signalling is inhibited, allowing the left-right determination pathway to influence somitogenesis. In all three studied vertebrate model species, zebrafish, chicken and mouse, the frequency of somite formation becomes asymmetric, with slower gene expression oscillations driving somitogenesis on the right side. Still, intriguingly, the resulting left-right asymmetric phenotypes differ significantly between these model species. While somitogenesis is generally considered as functionally equivalent among different vertebrates, substantial differences exist in the subset of oscillating genes between different vertebrate species. Variation also appears to exist in the way oscillations cease and somite boundaries become patterned. In addition, in absence of RA, the FGF8 gradient thought to constitute the determination wavefront becomes asymmetric in zebrafish and mouse, extending more anteriorly to the right, while remaining symmetric in chicken. Here we use a computational modelling approach to decipher the causes underlying species differences in asymmetric somitogenesis. Specifically, we investigate to what extent differences can be explained from observed differences in FGF asymmetry and whether differences in somite determination dynamics may also be involved. We demonstrate that a simple clock-and-wavefront model incorporating the observed left-right differences in somitogenesis frequency readily reproduces asymmetric somitogenesis in chicken. However, incorporating asymmetry in FGF signalling was insufficient to robustly reproduce mouse or zebrafish asymmetry phenotypes. In order to explain these phenoptypes we needed to extend the basic model, incorporating species-specific details of the somitogenesis determination mechanism. Our results thus demonstrate that a combination of differences in FGF dynamics and somite determination cause species differences in asymmetric somitogenesis. In addition,they highlight the power of using computational models as well as studying left-right asymmetry to obtain more insight in somitogenesis.
[Mh] Termos MeSH primário: Algoritmos
Padronização Corporal
Modelos Biológicos
Somitos/embriologia
[Mh] Termos MeSH secundário: Animais
Galinhas
Desenvolvimento Embrionário/efeitos dos fármacos
Desenvolvimento Embrionário/genética
Fator 8 de Crescimento de Fibroblasto/metabolismo
Regulação da Expressão Gênica no Desenvolvimento
Mesoderma/efeitos dos fármacos
Mesoderma/embriologia
Mesoderma/metabolismo
Camundongos
Somitos/metabolismo
Especificidade da Espécie
Tretinoína/farmacologia
Vertebrados/classificação
Vertebrados/embriologia
Vertebrados/genética
Peixe-Zebra
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
148997-75-5 (Fibroblast Growth Factor 8); 5688UTC01R (Tretinoin)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:171111
[Lr] Data última revisão:
171111
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170517
[St] Status:MEDLINE


  10 / 1620 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28432217
[Au] Autor:Janesick A; Tang W; Nguyen TTL; Blumberg B
[Ad] Endereço:Department of Developmental and Cell Biology, 2011 Biological Sciences 3, University of California, Irvine, CA 92697-2300, USA.
[Ti] Título:RARß2 is required for vertebrate somitogenesis.
[So] Source:Development;144(11):1997-2008, 2017 06 01.
[Is] ISSN:1477-9129
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:During vertebrate somitogenesis, retinoic acid is known to establish the position of the determination wavefront, controlling where new somites are permitted to form along the anteroposterior body axis. Less is understood about how RAR regulates somite patterning, rostral-caudal boundary setting, specialization of myotome subdivisions or the specific RAR subtype that is required for somite patterning. Characterizing the function of RARß has been challenging due to the absence of embryonic phenotypes in murine loss-of-function studies. Using the system, we show that RARß2 plays a specific role in somite number and size, restriction of the presomitic mesoderm anterior border, somite chevron morphology and hypaxial myoblast migration. is the RAR subtype whose expression is most upregulated in response to ligand and its localization in the trunk somites positions it at the right time and place to respond to embryonic retinoid levels during somitogenesis. RARß2 positively regulates a marker of hypaxial muscle, and negatively regulates via to restrict the anterior boundaries of the presomitic mesoderm and caudal progenitor pool. These results demonstrate for the first time an early and essential role for RARß2 in vertebrate somitogenesis.
[Mh] Termos MeSH primário: Desenvolvimento Embrionário
Receptores do Ácido Retinoico/metabolismo
Somitos/embriologia
Xenopus laevis/embriologia
Xenopus laevis/metabolismo
[Mh] Termos MeSH secundário: Animais
Benzoatos/farmacologia
Biomarcadores/metabolismo
Embrião não Mamífero/efeitos dos fármacos
Embrião não Mamífero/metabolismo
Desenvolvimento Embrionário/genética
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos
Larva/efeitos dos fármacos
Larva/metabolismo
Mesoderma/efeitos dos fármacos
Mesoderma/embriologia
Mesoderma/metabolismo
Modelos Biológicos
Morfolinos/farmacologia
Músculos/efeitos dos fármacos
Músculos/embriologia
Músculos/metabolismo
Regiões Promotoras Genéticas/genética
Isoformas de Proteínas/genética
Isoformas de Proteínas/metabolismo
Receptores do Ácido Retinoico/genética
Receptor alfa de Ácido Retinoico/genética
Receptor alfa de Ácido Retinoico/metabolismo
Retinoides/farmacologia
Somitos/efeitos dos fármacos
Somitos/metabolismo
Tretinoína/farmacologia
Proteínas de Xenopus/genética
Proteínas de Xenopus/metabolismo
Xenopus laevis/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
[Nm] Nome de substância:
0 (Benzoates); 0 (Biomarkers); 0 (Morpholinos); 0 (Protein Isoforms); 0 (Receptors, Retinoic Acid); 0 (Retinoic Acid Receptor alpha); 0 (Retinoids); 0 (Xenopus Proteins); 0 (retinoic acid receptor beta); 0 (retinoic acid receptor gamma); 5688UTC01R (Tretinoin); 71441-28-6 (4-(2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl)benzoic acid)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:171126
[Lr] Data última revisão:
171126
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170423
[St] Status:MEDLINE
[do] DOI:10.1242/dev.144345



página 1 de 162 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde