|
[PMID]: | 27846300 |
[Au] Autor: | Bledsoe JW; Peterson BC; Swanson KS; Small BC |
[Ad] Endereço: | Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Animal Science, Southern Illinois University, Carbondale, IL, United States of America. |
[Ti] Título: | Ontogenetic Characterization of the Intestinal Microbiota of Channel Catfish through 16S rRNA Gene Sequencing Reveals Insights on Temporal Shifts and the Influence of Environmental Microbes. |
[So] Source: | PLoS One;11(11):e0166379, 2016. | [Is] ISSN: | 1932-6203 |
[Cp] País de publicação: | United States |
[La] Idioma: | eng |
[Ab] Resumo: | Aquaculture recently overtook capture fisheries as the largest producer of food fish, but to continue increasing fish production the industry is in search of better methods of improving fish health and growth. Pre- and probiotic supplementation has gained attention as a means of solving these issues, however, for such approaches to be successful, we must first gain a more holistic understanding of the factors influencing the microbial communities present in the intestines of fish. In this study, we characterize the bacterial communities associated with the digestive tract of a highly valuable U.S. aquaculture species, channel catfish Ictalurus punctatus, over the first 193 days of life to evaluate temporal changes that may occur throughout ontogenetic development of the host. Intestinal microbiota were surveyed with high-throughput DNA sequencing of 16S rRNA V4 gene amplicons derived from fish at 3, 65, 125, and 193 days post hatch (dph), while also characterizing the environmental microbes derived from the water supply and the administered diets. Microbial communities inhabiting the intestines of catfish early in life were dynamic, with significant shifts occurring up to 125 dph when the microbiota somewhat stabilized, as shifts were less apparent between 125 to 193 dph. Bacterial phyla present in the gut of catfish throughout ontogeny include Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria; with the species Cetobacterium somerae and Plesiomonas shigelloides showing the highest abundance in the catfish microbiota after 3 dph. Comparisons of the gut microbiota to the environmental microbes reveals that the fish gut is maintained as a niche habitat, separate from the overall microbial communities present in diets and water-supply. Although, there is also evidence that the environmental microbiota serves as an inoculum to the fish gut. Our results have implications for future research related to channel catfish biology and culture, and increase our understanding of ontogenetic effects on the microbiota of teleost fish. |
[Mh] Termos MeSH primário: |
Microbiologia Ambiental Microbioma Gastrointestinal/genética Ictaluridae/microbiologia RNA Ribossômico 16S/genética
|
[Mh] Termos MeSH secundário: |
Animais Bacteroidetes/genética Bacteroidetes/isolamento & purificação Ecossistema Firmicutes/genética Firmicutes/isolamento & purificação Fusobactérias/genética Fusobactérias/isolamento & purificação Ictaluridae/genética Filogenia Proteobactérias/genética Proteobactérias/isolamento & purificação RNA Ribossômico 16S/classificação
|
[Pt] Tipo de publicação: | JOURNAL ARTICLE |
[Nm] Nome de substância:
| 0 (RNA, Ribosomal, 16S) |
[Em] Mês de entrada: | 1706 |
[Cu] Atualização por classe: | 170621 |
[Lr] Data última revisão:
| 170621 |
[Sb] Subgrupo de revista: | IM |
[Da] Data de entrada para processamento: | 161116 |
[St] Status: | MEDLINE |
[do] DOI: | 10.1371/journal.pone.0166379 |
|
|
|