[PMID]: | 28922413 |
[Au] Autor: | Fraiberk M; Hájková M; Krulová M; Kojzarová M; Drda Morávková A; Psikal I; Forstová J |
[Ad] Endereço: | Charles University, Faculty of Science, Prague, Czech Republic. |
[Ti] Título: | Exploitation of stable nanostructures based on the mouse polyomavirus for development of a recombinant vaccine against porcine circovirus 2. |
[So] Source: | PLoS One;12(9):e0184870, 2017. |
[Is] ISSN: | 1932-6203 |
[Cp] País de publicação: | United States |
[La] Idioma: | eng |
[Ab] Resumo: | The aim of this study was to develop a suitable vaccine antigen against porcine circovirus 2 (PCV2), the causative agent of post-weaning multi-systemic wasting syndrome, which causes significant economic losses in swine breeding. Chimeric antigens containing PCV2b Cap protein sequences based on the mouse polyomavirus (MPyV) nanostructures were developed. First, universal vectors for baculovirus-directed production of chimeric MPyV VLPs or pentamers of the major capsid protein, VP1, were designed for their exploitation as vaccines against other pathogens. Various strategies were employed based on: A) exposure of selected immunogenic epitopes on the surface of MPyV VLPs by insertion into a surface loop of the VP1 protein, B) insertion of foreign protein molecules inside the VLPs, or C) fusion of a foreign protein or its part with the C-terminus of VP1 protein, to form giant pentamers of a chimeric protein. We evaluated these strategies by developing a recombinant vaccine against porcine circovirus 2. All candidate vaccines induced the production of antibodies against the capsid protein of porcine circovirus after immunization of mice. The candidate vaccine, Var C, based on fusion of mouse polyomavirus and porcine circovirus capsid proteins, could induce the production of antibodies with the highest PCV2 neutralizing capacity. Its ability to induce the production of neutralization antibodies was verified after immunization of pigs. The advantage of this vaccine, apart from its efficient production in insect cells and easy purification, is that it represents a DIVA (differentiating infected from vaccinated animals) vaccine, which also induces an immune response against the mouse polyoma VP1 protein and is thus able to distinguish between vaccinated and naturally infected animals. |
[Mh] Termos MeSH primário: |
Proteínas do Capsídeo Circovirus Nanoestruturas Polyomavirus Proteínas Recombinantes de Fusão Vacinas Virais
|
[Mh] Termos MeSH secundário: |
Animais Proteínas do Capsídeo/genética Proteínas do Capsídeo/imunologia Circovirus/genética Circovirus/imunologia Camundongos Polyomavirus/genética Polyomavirus/imunologia Proteínas Recombinantes de Fusão/genética Proteínas Recombinantes de Fusão/imunologia Células Sf9 Spodoptera Suínos Vacinas Virais/genética Vacinas Virais/imunologia Vacinas Virais/farmacologia
|
[Pt] Tipo de publicação: | JOURNAL ARTICLE |
[Nm] Nome de substância:
| 0 (Capsid Proteins); 0 (Recombinant Fusion Proteins); 0 (VP1 protein, Poliovirus); 0 (Viral Vaccines) |
[Em] Mês de entrada: | 1710 |
[Cu] Atualização por classe: | 171013 |
[Lr] Data última revisão:
| 171013 |
[Sb] Subgrupo de revista: | IM |
[Da] Data de entrada para processamento: | 170919 |
[St] Status: | MEDLINE |
[do] DOI: | 10.1371/journal.pone.0184870 |
|
|