Base de dados : MEDLINE
Pesquisa : D02.241.081.337.593.812.750 [Categoria DeCS]
Referências encontradas : 260 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 26 ir para página                         

  1 / 260 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28470848
[Au] Autor:Camprubi E; Jordan SF; Vasiliadou R; Lane N
[Ad] Endereço:Department of Genetics, Evolution and Environment, University College London, London, UK.
[Ti] Título:Iron catalysis at the origin of life.
[So] Source:IUBMB Life;69(6):373-381, 2017 06.
[Is] ISSN:1521-6551
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Iron-sulphur proteins are ancient and drive fundamental processes in cells, notably electron transfer and CO fixation. Iron-sulphur minerals with equivalent structures could have played a key role in the origin of life. However, the 'iron-sulphur world' hypothesis has had a mixed reception, with questions raised especially about the feasibility of a pyrites-pulled reverse Krebs cycle. Phylogenetics suggests that the earliest cells drove carbon and energy metabolism via the acetyl CoA pathway, which is also replete in Fe(Ni)S proteins. Deep differences between bacteria and archaea in this pathway obscure the ancestral state. These differences make sense if early cells depended on natural proton gradients in alkaline hydrothermal vents. If so, the acetyl CoA pathway diverged with the origins of active ion pumping, and ancestral CO fixation might have been equivalent to methanogens, which depend on a membrane-bound NiFe hydrogenase, energy converting hydrogenase. This uses the proton-motive force to reduce ferredoxin, thence CO . The mechanism suggests that pH could modulate reduction potential at the active site of the enzyme, facilitating the difficult reduction of CO by H . This mechanism could be generalised under abiotic conditions so that steep pH differences across semi-conducting Fe(Ni)S barriers drives not just the first steps of CO fixation to C1 and C2 organics such as CO, CH SH and CH COSH, but a series of similar carbonylation and hydrogenation reactions to form longer chain carboxylic acids such as pyruvate, oxaloacetate and α-ketoglutarate, as in the incomplete reverse Krebs cycle found in methanogens. We suggest that the closure of a complete reverse Krebs cycle, by regenerating acetyl CoA directly, displaced the acetyl CoA pathway from many modern groups. A later reliance on acetyl CoA and ATP eliminated the need for the proton-motive force to drive most steps of the reverse Krebs cycle. © 2017 IUBMB Life, 69(6):373-381, 2017.
[Mh] Termos MeSH primário: Acetilcoenzima A/química
Ferredoxinas/química
Proteínas com Ferro-Enxofre/química
Ferro/química
Origem da Vida
[Mh] Termos MeSH secundário: Acetilcoenzima A/metabolismo
Archaea/química
Archaea/metabolismo
Bactérias/química
Bactérias/metabolismo
Ciclo do Carbono
Dióxido de Carbono/química
Dióxido de Carbono/metabolismo
Catálise
Ciclo do Ácido Cítrico
Ferredoxinas/metabolismo
Concentração de Íons de Hidrogênio
Fontes Hidrotermais
Ferro/metabolismo
Proteínas com Ferro-Enxofre/metabolismo
Ácidos Cetoglutáricos/química
Ácidos Cetoglutáricos/metabolismo
Ácido Oxaloacético/química
Ácido Oxaloacético/metabolismo
Prótons
Ácido Pirúvico/química
Ácido Pirúvico/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Ferredoxins); 0 (Iron-Sulfur Proteins); 0 (Ketoglutaric Acids); 0 (Protons); 142M471B3J (Carbon Dioxide); 2F399MM81J (Oxaloacetic Acid); 72-89-9 (Acetyl Coenzyme A); 8558G7RUTR (Pyruvic Acid); 8ID597Z82X (alpha-ketoglutaric acid); E1UOL152H7 (Iron)
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180305
[Lr] Data última revisão:
180305
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170505
[St] Status:MEDLINE
[do] DOI:10.1002/iub.1632


  2 / 260 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29311556
[Au] Autor:Springsteen G; Yerabolu JR; Nelson J; Rhea CJ; Krishnamurthy R
[Ad] Endereço:Department of Chemistry, Furman University, Greenville, SC, 29613, USA.
[Ti] Título:Linked cycles of oxidative decarboxylation of glyoxylate as protometabolic analogs of the citric acid cycle.
[So] Source:Nat Commun;9(1):91, 2018 01 08.
[Is] ISSN:2041-1723
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The development of metabolic approaches towards understanding the origins of life, which have focused mainly on the citric acid (TCA) cycle, have languished-primarily due to a lack of experimentally demonstrable and sustainable cycle(s) of reactions. We show here the existence of a protometabolic analog of the TCA involving two linked cycles, which convert glyoxylate into CO and produce aspartic acid in the presence of ammonia. The reactions proceed from either pyruvate, oxaloacetate or malonate in the presence of glyoxylate as the carbon source and hydrogen peroxide as the oxidant under neutral aqueous conditions and at mild temperatures. The reaction pathway demonstrates turnover under controlled conditions. These results indicate that simpler versions of metabolic cycles could have emerged under potential prebiotic conditions, laying the foundation for the appearance of more sophisticated metabolic pathways once control by (polymeric) catalysts became available.
[Mh] Termos MeSH primário: Dióxido de Carbono/química
Glioxilatos/química
Modelos Químicos
Origem da Vida
Ácido Oxaloacético/química
Ácido Pirúvico/química
[Mh] Termos MeSH secundário: Amônia/química
Ácido Aspártico/química
Descarboxilação
Peróxido de Hidrogênio/química
Concentração de Íons de Hidrogênio
Cinética
Malonatos/química
Redes e Vias Metabólicas
Oxirredução
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T; RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
[Nm] Nome de substância:
0 (Glyoxylates); 0 (Malonates); 142M471B3J (Carbon Dioxide); 2F399MM81J (Oxaloacetic Acid); 30KYC7MIAI (Aspartic Acid); 7664-41-7 (Ammonia); 8558G7RUTR (Pyruvic Acid); 9KX7ZMG0MK (malonic acid); BBX060AN9V (Hydrogen Peroxide); JQ39C92HH6 (glyoxylic acid)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180222
[Lr] Data última revisão:
180222
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180110
[St] Status:MEDLINE
[do] DOI:10.1038/s41467-017-02591-0


  3 / 260 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28887308
[Au] Autor:Malecki J; Jakobsson ME; Ho AYY; Moen A; Rustan AC; Falnes PØ
[Ad] Endereço:From the Department of Biosciences and.
[Ti] Título:Uncovering human METTL12 as a mitochondrial methyltransferase that modulates citrate synthase activity through metabolite-sensitive lysine methylation.
[So] Source:J Biol Chem;292(43):17950-17962, 2017 Oct 27.
[Is] ISSN:1083-351X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Lysine methylation is an important and much-studied posttranslational modification of nuclear and cytosolic proteins but is present also in mitochondria. However, the responsible mitochondrial lysine-specific methyltransferases (KMTs) remain largely elusive. Here, we investigated METTL12, a mitochondrial human -adenosylmethionine (AdoMet)-dependent methyltransferase and found it to methylate a single protein in mitochondrial extracts, identified as citrate synthase (CS). Using several and approaches, we demonstrated that METTL12 methylates CS on Lys-395, which is localized in the CS active site. Interestingly, the METTL12-mediated methylation inhibited CS activity and was blocked by the CS substrate oxaloacetate. Moreover, METTL12 was strongly inhibited by the reaction product -adenosylhomocysteine (AdoHcy). In summary, we have uncovered a novel human mitochondrial KMT that introduces a methyl modification into a metabolic enzyme and whose activity can be modulated by metabolic cues. Based on the established naming nomenclature for similar enzymes, we suggest that METTL12 be renamed CS-KMT (gene name ).
[Mh] Termos MeSH primário: Citrato (si)-Sintase/metabolismo
Metiltransferases/metabolismo
Proteínas Mitocondriais/metabolismo
Ácido Oxaloacético/metabolismo
S-Adenosil-Homocisteína/metabolismo
[Mh] Termos MeSH secundário: Citrato (si)-Sintase/genética
Células HeLa
Seres Humanos
Metilação
Metiltransferases/classificação
Metiltransferases/genética
Proteínas Mitocondriais/classificação
Proteínas Mitocondriais/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (METTL12 protein, human); 0 (Mitochondrial Proteins); 2F399MM81J (Oxaloacetic Acid); 979-92-0 (S-Adenosylhomocysteine); EC 2.1.1.- (Methyltransferases); EC 2.3.3.1 (Citrate (si)-Synthase)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171103
[Lr] Data última revisão:
171103
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170910
[St] Status:MEDLINE
[do] DOI:10.1074/jbc.M117.808451


  4 / 260 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28542252
[Au] Autor:Boyle NR; Sengupta N; Morgan JA
[Ad] Endereço:School of Chemical Engineering, Purdue University, West Lafayette, Indiana, United States of America.
[Ti] Título:Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii.
[So] Source:PLoS One;12(5):e0177292, 2017.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Despite the wealth of knowledge available for C. reinhardtii, the central metabolic fluxes of growth on acetate have not yet been determined. In this study, 13C-metabolic flux analysis (13C-MFA) was used to determine and quantify the metabolic pathways of primary metabolism in C. reinhardtii cells grown under heterotrophic conditions with acetate as the sole carbon source. Isotopic labeling patterns of compartment specific biomass derived metabolites were used to calculate the fluxes. It was found that acetate is ligated with coenzyme A in the three subcellular compartments (cytosol, mitochondria and plastid) included in the model. Two citrate synthases were found to potentially be involved in acetyl-coA metabolism; one localized in the mitochondria and the other acting outside the mitochondria. Labeling patterns demonstrate that Acetyl-coA synthesized in the plastid is directly incorporated in synthesis of fatty acids. Despite having a complete TCA cycle in the mitochondria, it was also found that a majority of the malate flux is shuttled to the cytosol and plastid where it is converted to oxaloacetate providing reducing equivalents to these compartments. When compared to predictions by flux balance analysis, fluxes measured with 13C-MFA were found to be suboptimal with respect to biomass yield; C. reinhardtii sacrifices biomass yield to produce ATP and reducing equivalents.
[Mh] Termos MeSH primário: Chlamydomonas reinhardtii/crescimento & desenvolvimento
Chlamydomonas reinhardtii/metabolismo
Processos Heterotróficos/fisiologia
[Mh] Termos MeSH secundário: Acetilcoenzima A/metabolismo
Trifosfato de Adenosina/metabolismo
Carbono/metabolismo
Isótopos de Carbono
Citrato (si)-Sintase/metabolismo
Coenzima A/metabolismo
Citosol/metabolismo
Ácidos Graxos/metabolismo
Malatos/metabolismo
Análise do Fluxo Metabólico
Mitocôndrias/metabolismo
Modelos Biológicos
Ácido Oxaloacético/metabolismo
Proteínas de Plantas/metabolismo
Plastídeos/metabolismo
Acetato de Zinco/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Carbon Isotopes); 0 (Fatty Acids); 0 (Malates); 0 (Plant Proteins); 2F399MM81J (Oxaloacetic Acid); 72-89-9 (Acetyl Coenzyme A); 7440-44-0 (Carbon); 817L1N4CKP (malic acid); 8L70Q75FXE (Adenosine Triphosphate); EC 2.3.3.1 (Citrate (si)-Synthase); FM5526K07A (Zinc Acetate); SAA04E81UX (Coenzyme A)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170919
[Lr] Data última revisão:
170919
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170526
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0177292


  5 / 260 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28375190
[Au] Autor:Araújo P; Fernandes A; de Freitas V; Oliveira J
[Ad] Endereço:Laboratório Associado para a Química Verde, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal. paula.araujo@fc.up.pt.
[Ti] Título:A New Chemical Pathway Yielding A-Type Vitisins in Red Wines.
[So] Source:Int J Mol Sci;18(4), 2017 Apr 04.
[Is] ISSN:1422-0067
[Cp] País de publicação:Switzerland
[La] Idioma:eng
[Ab] Resumo:A new chemical pathway yielding A-type vitisins in red wines is proposed herein from the reaction between anthocyanins and oxaloacetic acid (OAA). This new chemical path is thought to occur in the first stages of the wine production even during the fermentation process. This is due to the revealed high reactivity of OAA with anthocyanins compared with the already known precursor (pyruvic acid, PA). In model solutions at wine pH (3.5), when malvidin-3- -glucoside (mv-3-glc) is in contact with OAA and PA a decrease in the OAA concentration is observed along with the formation of A-type vitisin. Moreover, part of the OAA is also chemically converted into PA in model solutions. The reaction yields were also determined for OAA and PA using different mv-3-glc:organic acid molar ratios (1:0.5, 1:1, 1:5, 1:10; 1:50, and 1:100) and these values were always higher for OAA when compared to PA, even at the lowest molar ratio (1:0.5). The reaction yields were higher at pH 2.6 in comparison to pH 1.5 and 3.5, being less affected at pH 3.5 for OAA. These results support the idea that OAA can be at the origin of A-type vitisins in the first stages of wine production and PA in the subsequent ageing process.
[Mh] Termos MeSH primário: Frutas/metabolismo
Redes e Vias Metabólicas
Vitis/metabolismo
Vinho/análise
[Mh] Termos MeSH secundário: Análise de Variância
Antocianinas/química
Antocianinas/metabolismo
Cromatografia Líquida de Alta Pressão/métodos
Frutas/química
Glucosídeos/química
Glucosídeos/metabolismo
Concentração de Íons de Hidrogênio
Modelos Químicos
Estrutura Molecular
Ácido Oxaloacético/química
Ácido Oxaloacético/metabolismo
Ácido Pirúvico/química
Ácido Pirúvico/metabolismo
Vitis/química
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Anthocyanins); 0 (Glucosides); 2F399MM81J (Oxaloacetic Acid); 7228-78-6 (malvidin-3-glucoside); 8558G7RUTR (Pyruvic Acid)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170601
[Lr] Data última revisão:
170601
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170405
[St] Status:MEDLINE


  6 / 260 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28290777
[Au] Autor:Nagano H; Shibano K; Matsumoto Y; Yokota A; Wada M
[Ad] Endereço:a Laboratory of Microbial Physiology, Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan.
[Ti] Título:Isolation and amino acid sequence of a dehydratase acting on d-erythro-3-hydroxyaspartate from Pseudomonas sp. N99, and its application in the production of optically active 3-hydroxyaspartate.
[So] Source:Biosci Biotechnol Biochem;81(6):1156-1164, 2017 Jun.
[Is] ISSN:1347-6947
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:An enzyme catalyzing the ammonia-lyase reaction for the conversion of d-erythro-3-hydroxyaspartate to oxaloacetate was purified from the cell-free extract of a soil-isolated bacterium Pseudomonas sp. N99. The enzyme exhibited ammonia-lyase activity toward l-threo-3-hydroxyaspartate and d-erythro-3-hydroxyaspartate, but not toward other 3-hydroxyaspartate isomers. The deduced amino acid sequence of the enzyme, which belongs to the serine/threonine dehydratase family, shows similarity to the sequence of l-threo-3-hydroxyaspartate ammonia-lyase (EC 4.3.1.16) from Pseudomonas sp. T62 (74%) and Saccharomyces cerevisiae (64%) and serine racemase from Schizosaccharomyces pombe (65%). These results suggest that the enzyme is similar to l-threo-3-hydroxyaspartate ammonia-lyase from Pseudomonas sp. T62, which does not act on d-erythro-3-hydroxyaspartate. We also then used the recombinant enzyme expressed in Escherichia coli to produce optically pure l-erythro-3-hydroxyaspartate and d-threo-3-hydroxyaspartate from the corresponding dl-racemic mixtures. The enzymatic resolution reported here is one of the simplest and the first enzymatic method that can be used for obtaining optically pure l-erythro-3-hydroxyaspartate.
[Mh] Termos MeSH primário: Ácido Aspártico/análogos & derivados
Proteínas de Bactérias/metabolismo
Hidroliases/metabolismo
Ácido Oxaloacético/metabolismo
Pseudomonas/enzimologia
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Ácido Aspártico/metabolismo
Proteínas de Bactérias/genética
Proteínas de Bactérias/isolamento & purificação
Clonagem Molecular
Escherichia coli/genética
Escherichia coli/metabolismo
Expressão Gênica
Hidroliases/genética
Hidroliases/isolamento & purificação
Cinética
Rotação Ocular
Ligação Proteica
Pseudomonas/química
Proteínas Recombinantes/genética
Proteínas Recombinantes/metabolismo
Saccharomyces cerevisiae/química
Saccharomyces cerevisiae/enzimologia
Schizosaccharomyces/química
Schizosaccharomyces/enzimologia
Alinhamento de Sequência
Homologia de Sequência de Aminoácidos
Estereoisomerismo
Especificidade por Substrato
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Recombinant Proteins); 1860-87-3 (3-hydroxyaspartic acid); 2F399MM81J (Oxaloacetic Acid); 30KYC7MIAI (Aspartic Acid); EC 4.2.1.- (Hydro-Lyases)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:170703
[Lr] Data última revisão:
170703
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170315
[St] Status:MEDLINE
[do] DOI:10.1080/09168451.2017.1295804


  7 / 260 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28033412
[Au] Autor:Wang YW; Chen TY; Yang TH; Chang CC; Yang TL; Lo YH; Huang JJ
[Ad] Endereço:Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan.
[Ti] Título:Thin-Film Transistor-Based Biosensors for Determining Stoichiometry of Biochemical Reactions.
[So] Source:PLoS One;11(12):e0169094, 2016.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The enzyme kinetic in a biochemical reaction is critical to scientific research and drug discovery but can hardly be determined experimentally from enzyme assays. In this work, a charge-current transducer (a transistor) is proposed to evaluate the status of biochemical reaction by monitoring the electrical charge changes. Using the malate-aspartate shuttle as an example, a thin-film transistor (TFT)-based biosensor with an extended gold pad is demonstrated to detect the biochemical reaction between NADH and NAD+. The drain current change indicates the status of chemical equilibrium and stoichiometry.
[Mh] Termos MeSH primário: Técnicas Biossensoriais/instrumentação
Transistores Eletrônicos
[Mh] Termos MeSH secundário: Condutividade Elétrica
Cinética
NAD/metabolismo
Ácido Oxaloacético/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0U46U6E8UK (NAD); 2F399MM81J (Oxaloacetic Acid)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:170705
[Lr] Data última revisão:
170705
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161230
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0169094


  8 / 260 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27501341
[Au] Autor:Li Y; Wang H; Dai F; Li P; Jin X; Huang Y; Nie Z; Yao S
[Ad] Endereço:State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
[Ti] Título:Label-free fluorescent enzymatic assay of citrate synthase by CoA-Au(I) co-ordination polymer and its application in a multi-enzyme logic gate cascade.
[So] Source:Biosens Bioelectron;86:1038-1046, 2016 Dec 15.
[Is] ISSN:1873-4235
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Citrate synthase (CS) is one of the key metabolic enzymes in the Krebs tricarboxylic acid (TCA) cycle. It regulates energy generation in mitochondrial respiration by catalysing the reaction between oxaloacetic acid (OAA) and acetyl coenzyme A (Ac-CoA) to generate citrate and coenzyme A (CoA). CS has been shown to be a biomarker of neurological diseases and various kinds of cancers. Here, a label-free fluorescent assay has been developed for homogeneously detecting CS and its inhibitor based on the in situ generation of CoA-Au(I) co-ordination polymer (CP) and the fluorescence signal-on by SYBR Green II-stained CoA-Au(I) CP. Because of the unique property of the CoA-Au(I) CP, this CS activity assay method could achieve excellent selectivity and sensitivity, with a linear range from 0.0033 U/µL to 0.264 U/µL and a limit of detection to be 0.00165 U/µL. Meanwhile, this assay method has advantages of being facile and cost effective with quick detection. Moreover, based on this method, a biomimetic logic system was established by rationally exploiting the cascade enzymatic interactions in TCA cycle for chemical information processing. In the TCA cycle-derived logic system, an AND-AND-AND-cascaded gate was rigorously operated step by step in one pot, and is outputted by a label-free fluorescent signal with visualized readout.
[Mh] Termos MeSH primário: Acetilcoenzima A/química
Citrato (si)-Sintase/análise
Complexos Multienzimáticos/análise
Complexos Multienzimáticos/química
Ácido Oxaloacético/química
Espectrometria de Fluorescência/métodos
[Mh] Termos MeSH secundário: Citrato (si)-Sintase/química
Ativação Enzimática
Corantes Fluorescentes/síntese química
Processamento de Sinais Assistido por Computador
Coloração e Rotulagem
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Fluorescent Dyes); 0 (Multienzyme Complexes); 2F399MM81J (Oxaloacetic Acid); 72-89-9 (Acetyl Coenzyme A); EC 2.3.3.1 (Citrate (si)-Synthase)
[Em] Mês de entrada:1702
[Cu] Atualização por classe:171024
[Lr] Data última revisão:
171024
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160809
[St] Status:MEDLINE


  9 / 260 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27385159
[Au] Autor:Go Y; Jeong JY; Jeoung NH; Jeon JH; Park BY; Kang HJ; Ha CM; Choi YK; Lee SJ; Ham HJ; Kim BG; Park KG; Park SY; Lee CH; Choi CS; Park TS; Lee WN; Harris RA; Lee IK
[Ad] Endereço:Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University, Daegu, South Korea.
[Ti] Título:Inhibition of Pyruvate Dehydrogenase Kinase 2 Protects Against Hepatic Steatosis Through Modulation of Tricarboxylic Acid Cycle Anaplerosis and Ketogenesis.
[So] Source:Diabetes;65(10):2876-87, 2016 Oct.
[Is] ISSN:1939-327X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Hepatic steatosis is associated with increased insulin resistance and tricarboxylic acid (TCA) cycle flux, but decreased ketogenesis and pyruvate dehydrogenase complex (PDC) flux. This study examined whether hepatic PDC activation by inhibition of pyruvate dehydrogenase kinase 2 (PDK2) ameliorates these metabolic abnormalities. Wild-type mice fed a high-fat diet exhibited hepatic steatosis, insulin resistance, and increased levels of pyruvate, TCA cycle intermediates, and malonyl-CoA but reduced ketogenesis and PDC activity due to PDK2 induction. Hepatic PDC activation by PDK2 inhibition attenuated hepatic steatosis, improved hepatic insulin sensitivity, reduced hepatic glucose production, increased capacity for ß-oxidation and ketogenesis, and decreased the capacity for lipogenesis. These results were attributed to altered enzymatic capacities and a reduction in TCA anaplerosis that limited the availability of oxaloacetate for the TCA cycle, which promoted ketogenesis. The current study reports that increasing hepatic PDC activity by inhibition of PDK2 ameliorates hepatic steatosis and insulin sensitivity by regulating TCA cycle anaplerosis and ketogenesis. The findings suggest PDK2 is a potential therapeutic target for nonalcoholic fatty liver disease.
[Mh] Termos MeSH primário: Fígado Gorduroso/enzimologia
Fígado Gorduroso/metabolismo
Proteínas Serina-Treonina Quinases/metabolismo
[Mh] Termos MeSH secundário: Animais
Ciclo do Ácido Cítrico/genética
Ciclo do Ácido Cítrico/fisiologia
Dieta Hiperlipídica/efeitos adversos
Fígado Gorduroso/etiologia
Glucose/metabolismo
Resistência à Insulina
Lipogênese/fisiologia
Fígado/metabolismo
Fígado/patologia
Masculino
Malonil Coenzima A/metabolismo
Camundongos
Camundongos Knockout
Ácido Oxaloacético/metabolismo
Proteínas Serina-Treonina Quinases/deficiência
Proteínas Serina-Treonina Quinases/genética
Complexo Piruvato Desidrogenase/metabolismo
Ácido Pirúvico/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Pyruvate Dehydrogenase Complex); 2F399MM81J (Oxaloacetic Acid); 524-14-1 (Malonyl Coenzyme A); 8558G7RUTR (Pyruvic Acid); EC 2.7.11.1 (Protein-Serine-Threonine Kinases); EC 2.7.11.2 (pyruvate dehydrogenase (acetyl-transferring) kinase); IY9XDZ35W2 (Glucose)
[Em] Mês de entrada:1705
[Cu] Atualização por classe:170519
[Lr] Data última revisão:
170519
[Sb] Subgrupo de revista:AIM; IM
[Da] Data de entrada para processamento:160708
[St] Status:MEDLINE
[do] DOI:10.2337/db16-0223


  10 / 260 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:27287543
[Au] Autor:Stepanova A; Shurubor Y; Valsecchi F; Manfredi G; Galkin A
[Ad] Endereço:Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilova Str., Moscow 119334, Russia.
[Ti] Título:Differential susceptibility of mitochondrial complex II to inhibition by oxaloacetate in brain and heart.
[So] Source:Biochim Biophys Acta;1857(9):1561-8, 2016 09.
[Is] ISSN:0006-3002
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:Mitochondrial Complex II is a key mitochondrial enzyme connecting the tricarboxylic acid (TCA) cycle and the electron transport chain. Studies of complex II are clinically important since new roles for this enzyme have recently emerged in cell signalling, cancer biology, immune response and neurodegeneration. Oxaloacetate (OAA) is an intermediate of the TCA cycle and at the same time is an inhibitor of complex II with high affinity (Kd~10(-8)M). Whether or not OAA inhibition of complex II is a physiologically relevant process is a significant, but still controversial topic. We found that complex II from mouse heart and brain tissue has similar affinity to OAA and that only a fraction of the enzyme in isolated mitochondrial membranes (30.2±6.0% and 56.4±5.6% in the heart and brain, respectively) is in the free, active form. Since OAA could bind to complex II during isolation, we established a novel approach to deplete OAA in the homogenates at the early stages of isolation. In heart, this treatment significantly increased the fraction of free enzyme, indicating that OAA binds to complex II during isolation. In brain the OAA-depleting system did not significantly change the amount of free enzyme, indicating that a large fraction of complex II is already in the OAA-bound inactive form. Furthermore, short-term ischemia resulted in a dramatic decline of OAA in tissues, but it did not change the amount of free complex II. Our data show that in brain OAA is an endogenous effector of complex II, potentially capable of modulating the activity of the enzyme.
[Mh] Termos MeSH primário: Encéfalo/enzimologia
Complexo II de Transporte de Elétrons/antagonistas & inibidores
Mitocôndrias/enzimologia
Miocárdio/enzimologia
Ácido Oxaloacético/farmacologia
[Mh] Termos MeSH secundário: Animais
Camundongos
Succinato Desidrogenase/antagonistas & inibidores
Succinato Desidrogenase/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
2F399MM81J (Oxaloacetic Acid); EC 1.3.5.1 (Electron Transport Complex II); EC 1.3.99.1 (Succinate Dehydrogenase)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171003
[Lr] Data última revisão:
171003
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160612
[St] Status:MEDLINE



página 1 de 26 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde