Base de dados : MEDLINE
Pesquisa : D02.241.755.812.800 [Categoria DeCS]
Referências encontradas : 6107 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 611 ir para página                         

  1 / 6107 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29017767
[Au] Autor:Kwak MK; Ku M; Kang SO
[Ad] Endereço:Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea. Electronic address: genie6@snu.ac.kr.
[Ti] Título:Inducible NAD(H)-linked methylglyoxal oxidoreductase regulates cellular methylglyoxal and pyruvate through enhanced activities of alcohol dehydrogenase and methylglyoxal-oxidizing enzymes in glutathione-depleted Candida albicans.
[So] Source:Biochim Biophys Acta;1862(1):18-39, 2018 01.
[Is] ISSN:0006-3002
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:BACKGROUND: High methylglyoxal content disrupts cell physiology, but mammals have scavengers to prevent glycolytic and mitochondrial dysfunctions. In yeast, methylglyoxal accumulation triggers methylglyoxal-oxidizing alcohol dehydrogenase (Adh1) activity. While methylglyoxal reductases and glyoxalases have been well studied in prokaryotes and eukaryotes, experimental evidence for methylglyoxal dehydrogenase (Mgd) and other catalytic activities of this enzyme affecting glycolysis and the tricarboxylic acid cycle is lacking. METHODS: A glycine-rich cytoplasmic Mgd protein, designated as Mgd1/Grp2, was isolated from glutathione-depleted Candida albicans. The effects of Mgd1/Grp2 activities on metabolic pathophysiology were investigated using knockout and overexpression mutants. We measured glutathione-(in)dependent metabolite contents and metabolic effects, including viability, oxygen consumption, ADH1 transcripts, and glutathione reductase and α-ketoglutarate dehydrogenase activities in the mutants. Based on the findings, methylglyoxal-oxidizing proteins were monitored to determine effects of MGD1/GRP2 disruption on methylglyoxal-scavenging traits during glutathione deprivation. RESULTS: Methylglyoxal-oxidizing NAD(H)-linked Mgd1/Grp2 was found solely in glutathione auxotrophs, and it catalyzed the reduction of both methylglyoxal and pyruvate. MGD1/GRP2 disruptants showed growth defects, cell-cycle arrest, and methylglyoxal and pyruvate accumulation with mitochondrial impairment, regardless of ADH1 compensation. Other methylglyoxal-oxidizing enzymes were identified as key glycolytic enzymes with enhanced activity and transcription in MGD1/GRP2 disruptants, irrespective of glutathione content. CONCLUSIONS: Failure of methylglyoxal and pyruvate dissimilation by Mgd1/Grp2 deficiency leads to poor glutathione-dependent redox regulation despite compensation by Adh1. GENERAL SIGNIFICANCE: This is the first report that multifunctional Mgd activities contribute to scavenging methylglyoxal and pyruvate to maintain metabolic homeostasis and the redox pool via glycolytic enzymes and Adh1 expression.
[Mh] Termos MeSH primário: Álcool Desidrogenase/metabolismo
Oxirredutases do Álcool/metabolismo
Candida albicans/metabolismo
Proteínas Fúngicas/metabolismo
Glutationa/metabolismo
Aldeído Pirúvico/metabolismo
Ácido Pirúvico/metabolismo
[Mh] Termos MeSH secundário: Álcool Desidrogenase/genética
Oxirredutases do Álcool/genética
Candida albicans/genética
Proteínas Fúngicas/genética
Glutationa/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Fungal Proteins); 722KLD7415 (Pyruvaldehyde); 8558G7RUTR (Pyruvic Acid); EC 1.1.- (Alcohol Oxidoreductases); EC 1.1.1.1 (Alcohol Dehydrogenase); EC 1.1.3.- (glyoxal oxidase); GAN16C9B8O (Glutathione)
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180309
[Lr] Data última revisão:
180309
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171012
[St] Status:MEDLINE


  2 / 6107 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28470848
[Au] Autor:Camprubi E; Jordan SF; Vasiliadou R; Lane N
[Ad] Endereço:Department of Genetics, Evolution and Environment, University College London, London, UK.
[Ti] Título:Iron catalysis at the origin of life.
[So] Source:IUBMB Life;69(6):373-381, 2017 06.
[Is] ISSN:1521-6551
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Iron-sulphur proteins are ancient and drive fundamental processes in cells, notably electron transfer and CO fixation. Iron-sulphur minerals with equivalent structures could have played a key role in the origin of life. However, the 'iron-sulphur world' hypothesis has had a mixed reception, with questions raised especially about the feasibility of a pyrites-pulled reverse Krebs cycle. Phylogenetics suggests that the earliest cells drove carbon and energy metabolism via the acetyl CoA pathway, which is also replete in Fe(Ni)S proteins. Deep differences between bacteria and archaea in this pathway obscure the ancestral state. These differences make sense if early cells depended on natural proton gradients in alkaline hydrothermal vents. If so, the acetyl CoA pathway diverged with the origins of active ion pumping, and ancestral CO fixation might have been equivalent to methanogens, which depend on a membrane-bound NiFe hydrogenase, energy converting hydrogenase. This uses the proton-motive force to reduce ferredoxin, thence CO . The mechanism suggests that pH could modulate reduction potential at the active site of the enzyme, facilitating the difficult reduction of CO by H . This mechanism could be generalised under abiotic conditions so that steep pH differences across semi-conducting Fe(Ni)S barriers drives not just the first steps of CO fixation to C1 and C2 organics such as CO, CH SH and CH COSH, but a series of similar carbonylation and hydrogenation reactions to form longer chain carboxylic acids such as pyruvate, oxaloacetate and α-ketoglutarate, as in the incomplete reverse Krebs cycle found in methanogens. We suggest that the closure of a complete reverse Krebs cycle, by regenerating acetyl CoA directly, displaced the acetyl CoA pathway from many modern groups. A later reliance on acetyl CoA and ATP eliminated the need for the proton-motive force to drive most steps of the reverse Krebs cycle. © 2017 IUBMB Life, 69(6):373-381, 2017.
[Mh] Termos MeSH primário: Acetilcoenzima A/química
Ferredoxinas/química
Proteínas com Ferro-Enxofre/química
Ferro/química
Origem da Vida
[Mh] Termos MeSH secundário: Acetilcoenzima A/metabolismo
Archaea/química
Archaea/metabolismo
Bactérias/química
Bactérias/metabolismo
Ciclo do Carbono
Dióxido de Carbono/química
Dióxido de Carbono/metabolismo
Catálise
Ciclo do Ácido Cítrico
Ferredoxinas/metabolismo
Concentração de Íons de Hidrogênio
Fontes Hidrotermais
Ferro/metabolismo
Proteínas com Ferro-Enxofre/metabolismo
Ácidos Cetoglutáricos/química
Ácidos Cetoglutáricos/metabolismo
Ácido Oxaloacético/química
Ácido Oxaloacético/metabolismo
Prótons
Ácido Pirúvico/química
Ácido Pirúvico/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Ferredoxins); 0 (Iron-Sulfur Proteins); 0 (Ketoglutaric Acids); 0 (Protons); 142M471B3J (Carbon Dioxide); 2F399MM81J (Oxaloacetic Acid); 72-89-9 (Acetyl Coenzyme A); 8558G7RUTR (Pyruvic Acid); 8ID597Z82X (alpha-ketoglutaric acid); E1UOL152H7 (Iron)
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180305
[Lr] Data última revisão:
180305
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170505
[St] Status:MEDLINE
[do] DOI:10.1002/iub.1632


  3 / 6107 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29311556
[Au] Autor:Springsteen G; Yerabolu JR; Nelson J; Rhea CJ; Krishnamurthy R
[Ad] Endereço:Department of Chemistry, Furman University, Greenville, SC, 29613, USA.
[Ti] Título:Linked cycles of oxidative decarboxylation of glyoxylate as protometabolic analogs of the citric acid cycle.
[So] Source:Nat Commun;9(1):91, 2018 01 08.
[Is] ISSN:2041-1723
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The development of metabolic approaches towards understanding the origins of life, which have focused mainly on the citric acid (TCA) cycle, have languished-primarily due to a lack of experimentally demonstrable and sustainable cycle(s) of reactions. We show here the existence of a protometabolic analog of the TCA involving two linked cycles, which convert glyoxylate into CO and produce aspartic acid in the presence of ammonia. The reactions proceed from either pyruvate, oxaloacetate or malonate in the presence of glyoxylate as the carbon source and hydrogen peroxide as the oxidant under neutral aqueous conditions and at mild temperatures. The reaction pathway demonstrates turnover under controlled conditions. These results indicate that simpler versions of metabolic cycles could have emerged under potential prebiotic conditions, laying the foundation for the appearance of more sophisticated metabolic pathways once control by (polymeric) catalysts became available.
[Mh] Termos MeSH primário: Dióxido de Carbono/química
Glioxilatos/química
Modelos Químicos
Origem da Vida
Ácido Oxaloacético/química
Ácido Pirúvico/química
[Mh] Termos MeSH secundário: Amônia/química
Ácido Aspártico/química
Descarboxilação
Peróxido de Hidrogênio/química
Concentração de Íons de Hidrogênio
Cinética
Malonatos/química
Redes e Vias Metabólicas
Oxirredução
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T; RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
[Nm] Nome de substância:
0 (Glyoxylates); 0 (Malonates); 142M471B3J (Carbon Dioxide); 2F399MM81J (Oxaloacetic Acid); 30KYC7MIAI (Aspartic Acid); 7664-41-7 (Ammonia); 8558G7RUTR (Pyruvic Acid); 9KX7ZMG0MK (malonic acid); BBX060AN9V (Hydrogen Peroxide); JQ39C92HH6 (glyoxylic acid)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180222
[Lr] Data última revisão:
180222
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180110
[St] Status:MEDLINE
[do] DOI:10.1038/s41467-017-02591-0


  4 / 6107 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29199988
[Au] Autor:Mydy LS; Mashhadi Z; Knight TW; Fenske T; Hagemann T; Hoppe RW; Han L; Miller TR; Schwabacher AW; Silvaggi NR
[Ad] Endereço:Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
[Ti] Título:Swit_4259, an acetoacetate decarboxylase-like enzyme from Sphingomonas wittichii RW1.
[So] Source:Acta Crystallogr F Struct Biol Commun;73(Pt 12):672-681, 2017 Dec 01.
[Is] ISSN:2053-230X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The Gram-negative bacterium Sphingomonas wittichii RW1 is notable for its ability to metabolize a variety of aromatic hydrocarbons. Not surprisingly, the S. wittichii genome contains a number of putative aromatic hydrocarbon-degrading gene clusters. One of these includes an enzyme of unknown function, Swit_4259, which belongs to the acetoacetate decarboxylase-like superfamily (ADCSF). Here, it is reported that Swit_4259 is a small (28.8 kDa) tetrameric ADCSF enzyme that, unlike the prototypical members of the superfamily, does not have acetoacetate decarboxylase activity. Structural characterization shows that the tertiary structure of Swit_4259 is nearly identical to that of the true decarboxylases, but there are important differences in the fine structure of the Swit_4259 active site that lead to a divergence in function. In addition, it is shown that while it is a poor substrate, Swit_4259 can catalyze the hydration of 2-oxo-hex-3-enedioate to yield 2-oxo-4-hydroxyhexanedioate. It is also demonstrated that Swit_4259 has pyruvate aldolase-dehydratase activity, a feature that is common to all of the family V ADCSF enzymes studied to date. The enzymatic activity, together with the genomic context, suggests that Swit_4259 may be a hydratase with a role in the metabolism of an as-yet-unknown hydrocarbon. These data have implications for engineering bioremediation pathways to degrade specific pollutants, as well as structure-function relationships within the ADCSF in general.
[Mh] Termos MeSH primário: Proteínas de Bactérias/química
Proteínas de Bactérias/metabolismo
Carboxiliases/química
Sphingomonas/enzimologia
[Mh] Termos MeSH secundário: Acetoacetatos/química
Acetoacetatos/metabolismo
Proteínas de Bactérias/genética
Carboxiliases/genética
Carboxiliases/metabolismo
Domínio Catalítico
Cristalografia por Raios X
Ácidos Cetoglutáricos/metabolismo
Espectroscopia de Ressonância Magnética
Modelos Moleculares
Conformação Proteica
Ácido Pirúvico/química
Ácido Pirúvico/metabolismo
Espectrometria de Massas por Ionização por Electrospray
Especificidade por Substrato
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Acetoacetates); 0 (Bacterial Proteins); 0 (Ketoglutaric Acids); 4ZI204Y1MC (acetoacetic acid); 8558G7RUTR (Pyruvic Acid); 8ID597Z82X (alpha-ketoglutaric acid); EC 4.1.1.- (Carboxy-Lyases); EC 4.1.1.4 (acetoacetate decarboxylase)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180222
[Lr] Data última revisão:
180222
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171205
[St] Status:MEDLINE
[do] DOI:10.1107/S2053230X17015862


  5 / 6107 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29248131
[Au] Autor:Wilde L; Roche M; Domingo-Vidal M; Tanson K; Philp N; Curry J; Martinez-Outschoorn U
[Ad] Endereço:Department of Medical Oncology Thomas Jefferson University, Philadelphia, PA.
[Ti] Título:Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development.
[So] Source:Semin Oncol;44(3):198-203, 2017 06.
[Is] ISSN:1532-8708
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Glucose is a key metabolite used by cancer cells to generate ATP, maintain redox state and create biomass. Glucose can be catabolized to lactate in the cytoplasm, which is termed glycolysis, or alternatively can be catabolized to carbon dioxide and water in the mitochondria via oxidative phosphorylation. Metabolic heterogeneity exists in a subset of human tumors, with some cells maintaining a glycolytic phenotype while others predominantly utilize oxidative phosphorylation. Cells within tumors interact metabolically with transfer of catabolites from supporting stromal cells to adjacent cancer cells. The Reverse Warburg Effect describes when glycolysis in the cancer-associated stroma metabolically supports adjacent cancer cells. This catabolite transfer, which induces stromal-cancer metabolic coupling, allows cancer cells to generate ATP, increase proliferation, and reduce cell death. Catabolites implicated in metabolic coupling include the monocarboxylates lactate, pyruvate, and ketone bodies. Monocarboxylate transporters (MCT) are critically necessary for release and uptake of these catabolites. MCT4 is involved in the release of monocarboxylates from cells, is regulated by catabolic transcription factors such as hypoxia inducible factor 1 alpha (HIF1A) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and is highly expressed in cancer-associated fibroblasts. Conversely, MCT1 is predominantly involved in the uptake of these catabolites and is highly expressed in a subgroup of cancer cells. MYC and TIGAR, which are genes involved in cellular proliferation and anabolism, are inducers of MCT1. Profiling human tumors on the basis of an altered redox balance and intra-tumoral metabolic interactions may have important biomarker and therapeutic implications. Alterations in the redox state and mitochondrial function of cells can induce metabolic coupling. Hence, there is interest in redox and metabolic modulators as anticancer agents. Also, markers of metabolic coupling have been associated with poor outcomes in numerous human malignancies and may be useful prognostic and predictive biomarkers.
[Mh] Termos MeSH primário: Trifosfato de Adenosina/metabolismo
Glucose/metabolismo
Neoplasias/metabolismo
[Mh] Termos MeSH secundário: Antineoplásicos
Proliferação Celular
Descoberta de Drogas
Fibroblastos/metabolismo
Glicólise
Seres Humanos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
Corpos Cetônicos/metabolismo
Ácido Láctico/metabolismo
Transportadores de Ácidos Monocarboxílicos/metabolismo
Proteínas Musculares/metabolismo
NF-kappa B/metabolismo
Neoplasias/tratamento farmacológico
Proteínas Proto-Oncogênicas c-myc/metabolismo
Ácido Pirúvico/metabolismo
Células Estromais/metabolismo
Simportadores/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Antineoplastic Agents); 0 (C12orf5 protein, human); 0 (HIF1A protein, human); 0 (Hypoxia-Inducible Factor 1, alpha Subunit); 0 (Intracellular Signaling Peptides and Proteins); 0 (Ketone Bodies); 0 (MYC protein, human); 0 (Monocarboxylic Acid Transporters); 0 (Muscle Proteins); 0 (NF-kappa B); 0 (Proto-Oncogene Proteins c-myc); 0 (SLC16A4 protein, human); 0 (Symporters); 0 (monocarboxylate transport protein 1); 33X04XA5AT (Lactic Acid); 8558G7RUTR (Pyruvic Acid); 8L70Q75FXE (Adenosine Triphosphate); IY9XDZ35W2 (Glucose)
[Em] Mês de entrada:1712
[Cu] Atualização por classe:180222
[Lr] Data última revisão:
180222
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171218
[St] Status:MEDLINE


  6 / 6107 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29248726
[Au] Autor:Immanuel SRC; Ghanate AD; Parmar DS; Marriage F; Panchagnula V; Day PJ; Raghunathan A
[Ad] Endereço:Division of Evolution and Genomic Sciences, The Manchester Institute of Biotechnology, University of Manchester, United Kingdom; Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-National Chemical Laboratory,
[Ti] Título:Integrative analysis of rewired central metabolism in temozolomide resistant cells.
[So] Source:Biochem Biophys Res Commun;495(2):2010-2016, 2018 01 08.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:An authenticated U87MG clonal glioblastoma cell line was investigated to identify a sub-population of neurospheroidal (NSP) cells within the main epithelial population (U87MG). The NSP cells sorted using Fluorescence Assisted Cell Sorting (FACS) showed varied morphology, 30% lower growth rates, 40% higher IC values for temozolomide drug and could differentiate into the glial cell type (NDx). Metabolite profiling using HR-LCMS identified glucose, glutamine and serine in both populations and tryptophan only in U87MG as growth limiting substrates. Glycine, alanine, glutamate and proline were secreted by U87MG, however proline and glycine were re-utilized in NSP. Exo-metabolite profiling and phenotypic microarrays identified differential metabolism of primary carbon sources glucose and derived pyruvate for U87MG; glutamine and derived glutamate metabolism in NSP. Differential mRNA abundance of AKT1, PTEN, PIK3CA controlling metabolism, drug efflux, nutrient transport and epigenetic control MDM2 are potentially critical in shaping DNA methylation effects of temozolomide. Our study provides a new insight into the combined effect of these factors leading to temozolomide resistance in NSP.
[Mh] Termos MeSH primário: Aminoácidos/metabolismo
Dacarbazina/análogos & derivados
Glioblastoma/tratamento farmacológico
Glioblastoma/metabolismo
Glucose/metabolismo
Análise do Fluxo Metabólico/métodos
Ácido Pirúvico/metabolismo
[Mh] Termos MeSH secundário: Antineoplásicos Alquilantes/administração & dosagem
Linhagem Celular Tumoral
Sobrevivência Celular/efeitos dos fármacos
Dacarbazina/administração & dosagem
Relação Dose-Resposta a Droga
Glioblastoma/patologia
Seres Humanos
Integração de Sistemas
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Amino Acids); 0 (Antineoplastic Agents, Alkylating); 7GR28W0FJI (Dacarbazine); 8558G7RUTR (Pyruvic Acid); IY9XDZ35W2 (Glucose); YF1K15M17Y (temozolomide)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180214
[Lr] Data última revisão:
180214
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171218
[St] Status:MEDLINE


  7 / 6107 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29225125
[Au] Autor:Shimada N; Takasawa R; Tanuma SI
[Ad] Endereço:Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
[Ti] Título:Interdependence of GLO I and PKM2 in the Metabolic shift to escape apoptosis in GLO I-dependent cancer cells.
[So] Source:Arch Biochem Biophys;638:1-7, 2018 01 15.
[Is] ISSN:1096-0384
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Many cancer cells undergo metabolic reprogramming known as the Warburg effect, which is characterized by a greater dependence on glycolysis for ATP generation, even under normoxic conditions. Glyoxalase I (GLO I) is a rate-limiting enzyme involved in the detoxification of cytotoxic methylglyoxal formed in glycolysis and which is known to be highly expressed in many cancer cells. Thus, specific inhibitors of GLO I are expected to be effective anticancer drugs. We previously discovered a novel GLO I inhibitor named TLSC702. Although the strong inhibitory activity of TLSC702 was observed in the in vitro enzyme assay, higher concentrations were required to induce apoptosis at the cellular level. One of the proposed reasons for this difference is that cancer cells alter the energy metabolism leading them to become more dependent on mitochondrial respiration than glycolysis (Metabolic shift) to avoid apoptosis induction. Thus, we assumed that combination of TLSC702 with shikonin-a specific inhibitor of pyruvate kinase M2 (PKM2) that acts as a driver of TCA cycle by supplying pyruvate and which is known to be specifically expressed in cancer cells-would have anticancer effects. We herein show the anticancer effects of combination treatment with TLSC702 and shikonin, and a possible anticancer mechanism.
[Mh] Termos MeSH primário: Apoptose
Proteínas de Transporte/metabolismo
Lactoilglutationa Liase/metabolismo
Proteínas de Membrana/metabolismo
Proteínas de Neoplasias/metabolismo
Neoplasias/enzimologia
Piruvato Quinase/metabolismo
Hormônios Tireóideos/metabolismo
[Mh] Termos MeSH secundário: Butiratos/farmacologia
Proteínas de Transporte/antagonistas & inibidores
Proteínas de Transporte/genética
Linhagem Celular Tumoral
Ciclo do Ácido Cítrico/efeitos dos fármacos
Ensaios de Seleção de Medicamentos Antitumorais
Seres Humanos
Lactoilglutationa Liase/antagonistas & inibidores
Lactoilglutationa Liase/genética
Proteínas de Membrana/antagonistas & inibidores
Proteínas de Membrana/genética
Naftoquinonas/farmacologia
Proteínas de Neoplasias/antagonistas & inibidores
Proteínas de Neoplasias/genética
Neoplasias/tratamento farmacológico
Neoplasias/genética
Neoplasias/patologia
Piruvato Quinase/antagonistas & inibidores
Piruvato Quinase/genética
Ácido Pirúvico/metabolismo
Tiazóis/farmacologia
Hormônios Tireóideos/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (3-(1,3-benzothiazol-2-yl)-4-(4-methoxyphenyl)but-3-enoic acid); 0 (Butyrates); 0 (Carrier Proteins); 0 (Membrane Proteins); 0 (Naphthoquinones); 0 (Neoplasm Proteins); 0 (Thiazoles); 0 (Thyroid Hormones); 0 (thyroid hormone-binding proteins); 3IK6592UBW (shikonin); 8558G7RUTR (Pyruvic Acid); EC 2.7.1.40 (Pyruvate Kinase); EC 4.4.1.5 (GLO1 protein, human); EC 4.4.1.5 (Lactoylglutathione Lyase)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180214
[Lr] Data última revisão:
180214
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171212
[St] Status:MEDLINE


  8 / 6107 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28467058
[Au] Autor:Bouzon M; Perret A; Loreau O; Delmas V; Perchat N; Weissenbach J; Taran F; Marlière P
[Ad] Endereço:CEA, Genoscope , 2 rue Gaston Crémieux, 91000 Evry, France.
[Ti] Título:A Synthetic Alternative to Canonical One-Carbon Metabolism.
[So] Source:ACS Synth Biol;6(8):1520-1533, 2017 Aug 18.
[Is] ISSN:2161-5063
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:One-carbon metabolism is an ubiquitous metabolic pathway that encompasses the reactions transferring formyl-, hydroxymethyl- and methyl-groups bound to tetrahydrofolate for the synthesis of purine nucleotides, thymidylate, methionine and dehydropantoate, the precursor of coenzyme A. An alternative cyclic pathway was designed that substitutes 4-hydroxy-2-oxobutanoic acid (HOB), a compound absent from known metabolism, for the amino acids serine and glycine as one-carbon donors. It involves two novel reactions, the transamination of l-homoserine and the transfer of a one-carbon unit from HOB to tetrahydrofolate releasing pyruvate as coproduct. Since canonical reactions regenerate l-homoserine from pyruvate by carboxylation and subsequent reduction, every one-carbon moiety made available for anabolic reactions originates from CO . The HOB-dependent pathway was established in an Escherichia coli auxotroph selected for prototrophy using long-term cultivation protocols. Genetic, metabolic and biochemical evidence support the emergence of a functional HOB-dependent one-carbon pathway achieved with the recruitment of the two enzymes l-homoserine transaminase and HOB-hydroxymethyltransferase and of HOB as an essential metabolic intermediate. Escherichia coli biochemical reprogramming was achieved by minimally altering canonical metabolism and leveraging on natural selection mechanisms, thereby launching the resulting strain on an evolutionary trajectory diverging from all known extant species.
[Mh] Termos MeSH primário: Acetoacetatos/metabolismo
Carbono/metabolismo
Proteínas de Escherichia coli/metabolismo
Escherichia coli/metabolismo
Melhoramento Genético/métodos
Engenharia Metabólica/métodos
Redes e Vias Metabólicas/genética
[Mh] Termos MeSH secundário: Escherichia coli/genética
Proteínas de Escherichia coli/genética
Glicina/genética
Glicina/metabolismo
Ácido Pirúvico/metabolismo
Serina/genética
Serina/metabolismo
Biologia Sintética/métodos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Acetoacetates); 0 (Escherichia coli Proteins); 452VLY9402 (Serine); 4ZI204Y1MC (acetoacetic acid); 7440-44-0 (Carbon); 8558G7RUTR (Pyruvic Acid); TE7660XO1C (Glycine)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180201
[Lr] Data última revisão:
180201
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170504
[St] Status:MEDLINE
[do] DOI:10.1021/acssynbio.7b00029


  9 / 6107 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29180015
[Au] Autor:Tanaka KI; Shimoda M; Kawahara M
[Ad] Endereço:Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan. Electronic address: k-tana@musashino-u.ac.jp.
[Ti] Título:Pyruvic acid prevents Cu /Zn -induced neurotoxicity by suppressing mitochondrial injury.
[So] Source:Biochem Biophys Res Commun;495(1):1335-1341, 2018 01 01.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Zinc (Zn) is known as a co-factor for over 300 metalloproteins or enzymes, and has essential roles in many physiological functions. However, excessively high Zn concentrations are induced in pathological conditions such as interruption of blood flow in stroke or transient global ischemia-induced neuronal cell death. Furthermore, we recently found that copper (Cu ) significantly exacerbates Zn neurotoxicity in mouse hypothalamic neuronal cells, suggesting that Zn interaction with Cu is important for the development of neurological disease. Meanwhile, organic acids such as pyruvic acid and citric acid are reported to prevent neuronal cell death induced by various stresses. Thus, in this study, we focused on organic acids and searched for compounds that inhibit Cu /Zn -induced neurotoxicity. Initially, we examined the protective effect of various organic acids on Cu /Zn -induced neurotoxicity, and found that pyruvic acid clearly suppresses Cu /Zn -induced neurotoxicity in GT1-7 cells. Next, we examined the protective mechanisms of pyruvic acid against Cu /Zn -induced neurotoxicity. Specifically, we examined the possibilities that pyruvic acid chelates Cu and Zn or suppresses the ER stress response, but found that neither was suppressed by pyruvic acid treatment. In contrast, pyruvic acid significantly suppressed cytochrome c release into cytoplasm, an index of mitochondrial injury, in a dose-dependent manner. These results suggest that pyruvic acid prevents Cu /Zn -induced neuronal cell death by suppressing mitochondrial injury. Based on our results, we assume that pyruvic acid may be therapeutically beneficial for neurological diseases involving neuronal cell death such as vascular dementia.
[Mh] Termos MeSH primário: Cobre/toxicidade
Mitocôndrias/efeitos dos fármacos
Mitocôndrias/patologia
Neurônios/efeitos dos fármacos
Neurônios/patologia
Ácido Pirúvico/administração & dosagem
Zinco/toxicidade
[Mh] Termos MeSH secundário: Animais
Linhagem Celular
Sobrevivência Celular/efeitos dos fármacos
Relação Dose-Resposta a Droga
Camundongos
Fármacos Neuroprotetores/administração & dosagem
Neurotoxinas/toxicidade
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Neuroprotective Agents); 0 (Neurotoxins); 789U1901C5 (Copper); 8558G7RUTR (Pyruvic Acid); J41CSQ7QDS (Zinc)
[Em] Mês de entrada:1712
[Cu] Atualização por classe:180105
[Lr] Data última revisão:
180105
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171129
[St] Status:MEDLINE


  10 / 6107 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29175325
[Au] Autor:Zou S; Lang T; Zhang B; Huang K; Gong L; Luo H; Xu W; He X
[Ad] Endereço:Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural
[Ti] Título:Fatty acid oxidation alleviates the energy deficiency caused by the loss of MPC1 in MPC1 mice.
[So] Source:Biochem Biophys Res Commun;495(1):1008-1013, 2018 01 01.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Pyruvate is a central substrate in energy metabolism, paramount to carbohydrate, fat, and amino acid catabolic and anabolic pathways. Mitochondrial pyruvate carrier 1(MPC1) is one important component of the complex that facilitates mitochondrial pyruvate import. Complete MPC1 deficiency is a serious concern, and has been shown to result in embryonic lethality in mice. The study outlined in this paper generated one mouse line with the MPC1 protein part deficiency by using the CRISPR/Cas9 system. Clinical observations, body weight and organ/tissue weight, gas exchange, cold-stimulation, blood parameters, as well as histopathology analysis were analyzed to evaluate potential physiological abnormalities caused by MPC1 deficiency. Results indicate that MPC1 mice experienced a change in important clinical criteria such as low body weight, decreased movement, and low body shell temperature, few adipose accumulate. The mice show significant difference in some blood parameters including apo-B100, apo-A1, HDL, glucagon, insulin. However these changes alleviated while being fed with the HFD, which provided metabolites to sustain the TCA cycle and body development. The MPC1 mice may employ fatty acid oxidation to meet their bioenergetic demands. This study suggests that inhibition of MPC1 activity can boost fatty acid oxidation to provide sufficient energy to the body. This work promotes further studies regarding the interplay between carbohydrate and fat metabolism.
[Mh] Termos MeSH primário: Peso Corporal/fisiologia
Metabolismo Energético/fisiologia
Ácidos Graxos/metabolismo
Consumo de Oxigênio/fisiologia
Pró-Proteína Convertase 1/metabolismo
Ácido Pirúvico/metabolismo
[Mh] Termos MeSH secundário: Animais
Resposta ao Choque Frio/fisiologia
Ativação Enzimática
Masculino
Camundongos
Camundongos Knockout
Oxirredução
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Fatty Acids); 8558G7RUTR (Pyruvic Acid); EC 3.4.21.93 (Pcsk1 protein, mouse); EC 3.4.21.93 (Proprotein Convertase 1)
[Em] Mês de entrada:1712
[Cu] Atualização por classe:180105
[Lr] Data última revisão:
180105
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171128
[St] Status:MEDLINE



página 1 de 611 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde