Base de dados : MEDLINE
Pesquisa : D03.383.742.686.850.600.677 [Categoria DeCS]
Referências encontradas : 1007 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 101 ir para página                         

  1 / 1007 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29338263
[Au] Autor:Dai L; Li J; Yang J; Zhu Y; Men Y; Zeng Y; Cai Y; Dong C; Dai Z; Zhang X; Sun Y
[Ad] Endereço:National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 Xiqi Road, Tianjin Airport Economic Area, Tianjin 300308, China.
[Ti] Título:Use of a Promiscuous Glycosyltransferase from Bacillus subtilis 168 for the Enzymatic Synthesis of Novel Protopanaxatriol-Type Ginsenosides.
[So] Source:J Agric Food Chem;66(4):943-949, 2018 Jan 31.
[Is] ISSN:1520-5118
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Ginsenosides are the principal bioactive ingredients of Panax ginseng and possess diverse notable pharmacological activities. UDP-glycosyltransferase (UGT)-mediated glycosylation of the C6-OH and C20-OH of protopanaxatriol (PPT) is the prominent biological modification that contributes to the immense structural and functional diversity of PPT-type ginsenosides. In this study, the glycosylation of PPT and PPT-type ginsenosides was achieved using a promiscuous glycosyltransferase (Bs-YjiC) from Bacillus subtilis 168. PPT was selected as the probe for the in vitro glycodiversification of PPT-type ginsenosides using diverse UDP-sugars as sugar donors. Structural analysis of the newly biosynthesized products demonstrated that Bs-YjiC can transfer a glucosyl moiety to the free C3-OH, C6-OH, and C12-OH of PPT. Five PPT-type ginsenosides were biosynthesized, including ginsenoside Rh1 and four unnatural ginsenosides. The present study suggests flexible microbial UGTs play an important role in the enzymatic synthesis of novel ginsenosides.
[Mh] Termos MeSH primário: Bacillus subtilis/enzimologia
Ginsenosídeos/biossíntese
Glicosiltransferases/metabolismo
Sapogeninas/metabolismo
[Mh] Termos MeSH secundário: Glicosilação
Açúcares de Uridina Difosfato/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Ginsenosides); 0 (Sapogenins); 0 (Uridine Diphosphate Sugars); 34080-08-5 (protopanaxatriol); EC 2.4.- (Glycosyltransferases)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180212
[Lr] Data última revisão:
180212
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180118
[St] Status:MEDLINE
[do] DOI:10.1021/acs.jafc.7b03907


  2 / 1007 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28931093
[Au] Autor:Smith JA; Bar-Peled M
[Ad] Endereço:Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA, United States of America.
[Ti] Título:Synthesis of UDP-apiose in Bacteria: The marine phototroph Geminicoccus roseus and the plant pathogen Xanthomonas pisi.
[So] Source:PLoS One;12(9):e0184953, 2017.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The branched-chain sugar apiose was widely assumed to be synthesized only by plant species. In plants, apiose-containing polysaccharides are found in vascularized plant cell walls as the pectic polymers rhamnogalacturonan II and apiogalacturonan. Apiosylated secondary metabolites are also common in many plant species including ancestral avascular bryophytes and green algae. Apiosyl-residues have not been documented in bacteria. In a screen for new bacterial glycan structures, we detected small amounts of apiose in methanolic extracts of the aerobic phototroph Geminicoccus roseus and the pathogenic soil-dwelling bacteria Xanthomonas pisi. Apiose was also present in the cell pellet of X. pisi. Examination of these bacterial genomes uncovered genes with relatively low protein homology to plant UDP-apiose/UDP-xylose synthase (UAS). Phylogenetic analysis revealed that these bacterial UAS-like homologs belong in a clade distinct to UAS and separated from other nucleotide sugar biosynthetic enzymes. Recombinant expression of three bacterial UAS-like proteins demonstrates that they actively convert UDP-glucuronic acid to UDP-apiose and UDP-xylose. Both UDP-apiose and UDP-xylose were detectable in cell cultures of G. roseus and X. pisi. We could not, however, definitively identify the apiosides made by these bacteria, but the detection of apiosides coupled with the in vivo transcription of bUAS and production of UDP-apiose clearly demonstrate that these microbes have evolved the ability to incorporate apiose into glycans during their lifecycles. While this is the first report to describe enzymes for the formation of activated apiose in bacteria, the advantage of synthesizing apiose-containing glycans in bacteria remains unknown. The characteristics of bUAS and its products are discussed.
[Mh] Termos MeSH primário: Alphaproteobacteria/metabolismo
Carboxiliases/metabolismo
Ervilhas/microbiologia
Açúcares de Uridina Difosfato/biossíntese
Xanthomonas/metabolismo
[Mh] Termos MeSH secundário: Alphaproteobacteria/crescimento & desenvolvimento
Filogenia
Xanthomonas/crescimento & desenvolvimento
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (UDP-apiose); 0 (Uridine Diphosphate Sugars); EC 4.1.1.- (Carboxy-Lyases); EC 4.1.1.35 (UDPglucuronate decarboxylase)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171017
[Lr] Data última revisão:
171017
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170921
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0184953


  3 / 1007 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28490633
[Au] Autor:Calles-Garcia D; Yang M; Soya N; Melero R; Ménade M; Ito Y; Vargas J; Lukacs GL; Kollman JM; Kozlov G; Gehring K
[Ad] Endereço:From the Department of Biochemistry, McGill University, Montreal, Quebec H3G0B1, Canada.
[Ti] Título:Single-particle electron microscopy structure of UDP-glucose:glycoprotein glucosyltransferase suggests a selectivity mechanism for misfolded proteins.
[So] Source:J Biol Chem;292(27):11499-11507, 2017 Jul 07.
[Is] ISSN:1083-351X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) mediates quality control of glycoproteins in the endoplasmic reticulum by attaching glucose to -linked glycan of misfolded proteins. As a sensor, UGGT ensures that misfolded proteins are recognized by the lectin chaperones and do not leave the secretory pathway. The structure of UGGT and the mechanism of its selectivity for misfolded proteins have been unknown for 25 years. Here, we used negative-stain electron microscopy and small-angle X-ray scattering to determine the structure of UGGT from at 18-Å resolution. Three-dimensional reconstructions revealed a cage-like structure with a large central cavity. Particle classification revealed flexibility that precluded determination of a high-resolution structure. Introduction of biotinylation sites into a fungal UGGT expressed in allowed identification of the catalytic and first thioredoxin-like domains. We also used hydrogen-deuterium exchange mass spectrometry to map the binding site of an accessory protein, Sep15, to the first thioredoxin-like domain. The UGGT structural features identified suggest that the central cavity contains the catalytic site and is lined with hydrophobic surfaces. This enhances the binding of misfolded substrates with exposed hydrophobic residues and excludes folded proteins with hydrophilic surfaces. In conclusion, we have determined the UGGT structure, which enabled us to develop a plausible functional model of the mechanism for UGGT's selectivity for misfolded glycoproteins.
[Mh] Termos MeSH primário: Glucosiltransferases/química
Dobramento de Proteína
Açúcares de Uridina Difosfato/química
[Mh] Termos MeSH secundário: Animais
Medição da Troca de Deutério
Proteínas de Drosophila/química
Proteínas de Drosophila/genética
Proteínas de Drosophila/metabolismo
Drosophila melanogaster
Glucosiltransferases/genética
Glucosiltransferases/metabolismo
Interações Hidrofóbicas e Hidrofílicas
Domínios Proteicos
Selenoproteínas/química
Selenoproteínas/genética
Selenoproteínas/metabolismo
Açúcares de Uridina Difosfato/genética
Açúcares de Uridina Difosfato/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Drosophila Proteins); 0 (Selenoproteins); 0 (Sep15 protein, Drosophila); 0 (Uridine Diphosphate Sugars); EC 2.4.1.- (Glucosyltransferases); EC 2.4.1.- (mannosylglycoprotein 1,3-glucosyltransferase)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:170714
[Lr] Data última revisão:
170714
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170512
[St] Status:MEDLINE
[do] DOI:10.1074/jbc.M117.789495


  4 / 1007 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28192204
[Au] Autor:Kuttiyatveetil JRA; Sanders DAR
[Ad] Endereço:Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9, Canada.
[Ti] Título:Analysis of plant UDP-arabinopyranose mutase (UAM): Role of divalent metals and structure prediction.
[So] Source:Biochim Biophys Acta;1865(5):510-519, 2017 05.
[Is] ISSN:0006-3002
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:UDP-arabinopyranose mutase (UAM) is a plant enzyme which interconverts UDP-arabinopyranose (UDP-Arap; a six-membered sugar) to UDP-arabinofuranose (UDP-Araf; a five-membered sugar). Plant mutases belong to a small gene family called Reversibly Glycosylated Proteins (RGPs). So far, UAM has been identified in Oryza sativa (Rice), Arabidopsis thaliana and Hordeum vulgare (Barley). The enzyme requires divalent metal ions for catalytic activity. Here, the divalent metal ion dependency of UAMs from O. sativa (rice) and A. thaliana have been studied using HPLC-based kinetic assays. It was determined that UAM from these species had the highest relative activity in a range of 40-80µM Mn2+. Excess Mn2+ ion concentration decreased the enzyme activity. This trend was observed when other divalent metal ions were used to test activity. To gain a perspective of the role played by the metal ion in activity, an ab initio structural model was generated based on the UAM amino acid sequence and a potential metal binding region was identified. Based on our results, we propose that the probable role of the metal in UAM is stabilizing the diphosphate of the substrate, UDP-Arap.
[Mh] Termos MeSH primário: Arabidopsis/enzimologia
Transferases Intramoleculares/química
Oryza/enzimologia
Açúcares de Uridina Difosfato/química
[Mh] Termos MeSH secundário: Sítios de Ligação
Catálise
Parede Celular/enzimologia
Regulação da Expressão Gênica de Plantas
Transferases Intramoleculares/genética
Transferases Intramoleculares/metabolismo
Íons/química
Cinética
Metais/química
Ligação Proteica
Açúcares de Uridina Difosfato/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Ions); 0 (Metals); 0 (Uridine Diphosphate Sugars); 14697-41-7 (uridine diphosphate arabinose); EC 5.4.- (Intramolecular Transferases)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:171008
[Lr] Data última revisão:
171008
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170214
[St] Status:MEDLINE


  5 / 1007 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27696560
[Au] Autor:Hsu YH; Tagami T; Matsunaga K; Okuyama M; Suzuki T; Noda N; Suzuki M; Shimura H
[Ad] Endereço:Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
[Ti] Título:Functional characterization of UDP-rhamnose-dependent rhamnosyltransferase involved in anthocyanin modification, a key enzyme determining blue coloration in Lobelia erinus.
[So] Source:Plant J;89(2):325-337, 2017 Jan.
[Is] ISSN:1365-313X
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Because structural modifications of flavonoids are closely related to their properties, such as stability, solubility, flavor and coloration, characterizing the enzymes that catalyze the modification reactions can be useful for engineering agriculturally beneficial traits of flavonoids. In this work, we examined the enzymes involved in the modification pathway of highly glycosylated and acylated anthocyanins that accumulate in Lobelia erinus. Cultivar Aqua Blue (AB) of L. erinus is blue-flowered and accumulates delphinidin 3-O-p-coumaroylrutinoside-5-O-malonylglucoside-3'5'-O-dihydroxycinnamoylglucoside (lobelinins) in its petals. Cultivar Aqua Lavender (AL) is mauve-flowered, and LC-MS analyses showed that AL accumulated delphinidin 3-O-glucoside (Dp3G), which was not further modified toward lobelinins. A crude protein assay showed that modification processes of lobelinin were carried out in a specific order, and there was no difference between AB and AL in modification reactions after rhamnosylation of Dp3G, indicating that the lack of highly modified anthocyanins in AL resulted from a single mutation of rhamnosyltransferase catalyzing the rhamnosylation of Dp3G. We cloned rhamnosyltransferase genes (RTs) from AB and confirmed their UDP-rhamnose-dependent rhamnosyltransferase activities on Dp3G using recombinant proteins. In contrast, the RT gene in AL had a 5-bp nucleotide deletion, resulting in a truncated polypeptide without the plant secondary product glycosyltransferase box. In a complementation test, AL that was transformed with the RT gene from AB produced blue flowers. These results suggest that rhamnosylation is an essential process for lobelinin synthesis, and thus the expression of RT has a great impact on the flower color and is necessary for the blue color of Lobelia flowers.
[Mh] Termos MeSH primário: Antocianinas/metabolismo
Lobelia/fisiologia
Proteínas de Plantas/metabolismo
Açúcares de Uridina Difosfato/metabolismo
[Mh] Termos MeSH secundário: Clonagem Molecular
Teste de Complementação Genética
Glucosídeos/metabolismo
Hexosiltransferases/genética
Hexosiltransferases/metabolismo
Lobelia/genética
Lobelia/metabolismo
Filogenia
Pigmentação
Proteínas de Plantas/genética
Plantas Geneticamente Modificadas
Proteínas Recombinantes/genética
Proteínas Recombinantes/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Anthocyanins); 0 (Glucosides); 0 (Plant Proteins); 0 (Recombinant Proteins); 0 (Uridine Diphosphate Sugars); 0 (delphinidin 3-O-glucopyranoside); 1955-26-6 (UDP-rhamnose); EC 2.4.1.- (Hexosyltransferases)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171106
[Lr] Data última revisão:
171106
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161004
[St] Status:MEDLINE
[do] DOI:10.1111/tpj.13387


  6 / 1007 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:26991954
[Au] Autor:Ma L; Salas O; Bowler K; Oren-Young L; Bar-Peled M; Sharon A
[Ad] Endereço:Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, 69978, Israel.
[Ti] Título:Genetic alteration of UDP-rhamnose metabolism in Botrytis cinerea leads to the accumulation of UDP-KDG that adversely affects development and pathogenicity.
[So] Source:Mol Plant Pathol;18(2):263-275, 2017 Feb.
[Is] ISSN:1364-3703
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Botrytis cinerea is a model plant-pathogenic fungus that causes grey mould and rot diseases in a wide range of agriculturally important crops. A previous study has identified two enzymes and corresponding genes (bcdh, bcer) that are involved in the biochemical transformation of uridine diphosphate (UDP)-glucose, the major fungal wall nucleotide sugar precursor, to UDP-rhamnose. We report here that deletion of bcdh, the first biosynthetic gene in the metabolic pathway, or of bcer, the second gene in the pathway, abolishes the production of rhamnose-containing glycans in these mutant strains. Deletion of bcdh or double deletion of both bcdh and bcer has no apparent effect on fungal development or pathogenicity. Interestingly, deletion of the bcer gene alone adversely affects fungal development, giving rise to altered hyphal growth and morphology, as well as reduced sporulation, sclerotia production and virulence. Treatments with wall stressors suggest the alteration of cell wall integrity. Analysis of nucleotide sugars reveals the accumulation of the UDP-rhamnose pathway intermediate UDP-4-keto-6-deoxy-glucose (UDP-KDG) in hyphae of the Δbcer strain. UDP-KDG could not be detected in hyphae of the wild-type strain, indicating fast conversion to UDP-rhamnose by the BcEr enzyme. The correlation between high UDP-KDG and modified cell wall and developmental defects raises the possibility that high levels of UDP-KDG result in deleterious effects on cell wall composition, and hence on virulence. This is the first report demonstrating that the accumulation of a minor nucleotide sugar intermediate has such a profound and adverse effect on a fungus. The ability to identify molecules that inhibit Er (also known as NRS/ER) enzymes or mimic UDP-KDG may lead to the development of new antifungal drugs.
[Mh] Termos MeSH primário: Botrytis/genética
Botrytis/patogenicidade
Deleção de Genes
Redes e Vias Metabólicas/genética
Ramnose/metabolismo
Açúcares de Uridina Difosfato/metabolismo
Difosfato de Uridina/metabolismo
[Mh] Termos MeSH secundário: Botrytis/crescimento & desenvolvimento
Botrytis/metabolismo
Carbono/farmacologia
Parede Celular/efeitos dos fármacos
Parede Celular/metabolismo
Fabaceae/efeitos dos fármacos
Fabaceae/imunologia
Fabaceae/microbiologia
Genes Fúngicos
Redes e Vias Metabólicas/efeitos dos fármacos
Micélio/efeitos dos fármacos
Micélio/metabolismo
Fenótipo
Doenças das Plantas/imunologia
Doenças das Plantas/microbiologia
Folhas de Planta/efeitos dos fármacos
Folhas de Planta/microbiologia
Estresse Fisiológico/efeitos dos fármacos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Uridine Diphosphate Sugars); 1955-26-6 (UDP-rhamnose); 58-98-0 (Uridine Diphosphate); 7440-44-0 (Carbon); QN34XC755A (Rhamnose)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:170704
[Lr] Data última revisão:
170704
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160319
[St] Status:MEDLINE
[do] DOI:10.1111/mpp.12398


  7 / 1007 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28036352
[Au] Autor:Wu S; Ning F; Wu X; Wang W
[Ad] Endereço:College of Sciences, Henan Agricultural University, Zhengzhou, China.
[Ti] Título:Proteomic Characterization of Differential Abundant Proteins Accumulated between Lower and Upper Epidermises of Fleshy Scales in Onion (Allium cepa L.) Bulbs.
[So] Source:PLoS One;11(12):e0168959, 2016.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The onion (Allium cepa L.) is widely planted worldwide as a valuable vegetable crop. The scales of an onion bulb are a modified type of leaf. The one-layer-cell epidermis of onion scales is commonly used as a model experimental material in botany and molecular biology. The lower epidermis (LE) and upper epidermis (UE) of onion scales display obvious differences in microscopic structure, cell differentiation and pigment synthesis; however, associated proteomic differences are unclear. LE and UE can be easily sampled as single-layer-cell tissues for comparative proteomic analysis. In this study, a proteomic approach based on 2-DE and mass spectrometry (MS) was applied to compare LE and UE of fleshy scales from yellow and red onions. We identified 47 differential abundant protein spots (representing 31 unique proteins) between LE and UE in red and yellow onions. These proteins are mainly involved in pigment synthesis, stress response, and cell division. Particularly, the differentially accumulated chalcone-flavanone isomerase and flavone O-methyltransferase 1-like in LE may result in the differences in the onion scale color between red and yellow onions. Moreover, stress-related proteins abundantly accumulated in both LE and UE. In addition, the differential accumulation of UDP-arabinopyranose mutase 1-like protein and ß-1,3-glucanase in the LE may be related to the different cell sizes between LE and UE of the two types of onion. The data derived from this study provides new insight into the differences in differentiation and developmental processes between onion epidermises. This study may also make a contribution to onion breeding, such as improving resistances and changing colors.
[Mh] Termos MeSH primário: Cebolas/metabolismo
Proteínas/metabolismo
Proteoma/metabolismo
[Mh] Termos MeSH secundário: Cruzamento/métodos
Liases Intramoleculares/metabolismo
Folhas de Planta/metabolismo
Raízes de Plantas/metabolismo
Proteômica/métodos
Açúcares de Uridina Difosfato/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Proteins); 0 (Proteome); 0 (Uridine Diphosphate Sugars); 14697-41-7 (uridine diphosphate arabinose); EC 5.5.- (Intramolecular Lyases); EC 5.5.1.6 (chalcone isomerase)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170630
[Lr] Data última revisão:
170630
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161231
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0168959


  8 / 1007 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27835851
[Au] Autor:Yin S; Liu M; Kong JQ
[Ad] Endereço:Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
[Ti] Título:Functional analyses of OcRhS1 and OcUER1 involved in UDP-L-rhamnose biosynthesis in Ornithogalum caudatum.
[So] Source:Plant Physiol Biochem;109:536-548, 2016 Dec.
[Is] ISSN:1873-2690
[Cp] País de publicação:France
[La] Idioma:eng
[Ab] Resumo:UDP-L-rhamnose (UDP-Rha) is an important sugar donor for the synthesis of rhamnose-containing compounds in plants. However, only a few enzymes and their encoding genes involved in UDP-Rha biosynthesis are available in plants. Here, two genes encoding rhamnose synthase (RhS) and bi-functional UDP-4-keto-6-deoxy-D-glucose (UDP-4K6DG) 3, 5-epimerase/UDP-4-keto-L-rhamnose (UDP-4KR) 4-keto-reductase (UER) were isolated from Ornithogalum caudatum based on the RNA-Seq data. The OcRhS1 gene has an ORF (open reading frame) of 2019 bp encoding a tri-functional RhS enzyme. In vitro enzymatic assays revealed OcRhS1 can really convert UDP-D-glucose (UDP-Glc) into UDP-Rha via three consecutive reactions. Biochemical evidences indicated that the recombinant OcRhS1 was active in the pH range of 5-11 and over the temperature range of 0-60 °C. The K value of OcRhS1 for UDP-Glc was determined to be 1.52 × 10 M. OcRhS1 is a multi-domain protein with two sets of cofactor-binding motifs. The cofactors dependent properties of OcRhS1 were thus characterized in this research. Moreover, the N-terminal portion of OcRhS1 (OcRhS1-N) was observed to metabolize UDP-Glc to form intermediate UDP-4K6DG. OcUER1 contains an ORF of 906 bp encoding a polypeptide of 301 aa. OcUER1 shared high similarity with the carboxy-terminal domain of OcRhS1 (OcRhS1-C), suggesting its intrinsic ability of converting UDP-4K6DG into UDP-Rha. It was thus reasonably inferred that UDP-Glc could be bio-transformed into UDP-Rha under the collaborating action of OcRhS1-N and OcUER1. The subsequently biochemical assay verified this notion. Importantly, expression profiles of OcRhS1 and OcUER1 revealed their possible involvement in the biosynthesis of rhamnose-containing polysaccharides in O. caudatum.
[Mh] Termos MeSH primário: Ornithogalum/genética
Ornithogalum/metabolismo
Proteínas de Plantas/genética
Proteínas de Plantas/metabolismo
Ramnose/análogos & derivados
Açúcares de Uridina Difosfato/biossíntese
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Vias Biossintéticas
Desidrogenases de Carboidrato/química
Desidrogenases de Carboidrato/genética
Desidrogenases de Carboidrato/metabolismo
Carboidratos Epimerases/química
Carboidratos Epimerases/genética
Carboidratos Epimerases/metabolismo
Genes de Plantas
Cinética
Filogenia
Proteínas de Plantas/química
Proteínas Recombinantes/química
Proteínas Recombinantes/genética
Proteínas Recombinantes/metabolismo
Ramnose/biossíntese
Ramnose/genética
Homologia de Sequência de Aminoácidos
Açúcares de Uridina Difosfato/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Plant Proteins); 0 (Recombinant Proteins); 0 (Uridine Diphosphate Sugars); EC 1.1.- (Carbohydrate Dehydrogenases); EC 5.1.3.- (Carbohydrate Epimerases); QN34XC755A (Rhamnose)
[Em] Mês de entrada:1704
[Cu] Atualização por classe:170410
[Lr] Data última revisão:
170410
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161112
[St] Status:MEDLINE


  9 / 1007 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:27834878
[Au] Autor:Yin S; Sun YJ; Liu M; Li LN; Kong JQ
[Ad] Endereço:State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China. senyin@126.com.
[Ti] Título:cDNA Isolation and Functional Characterization of UDP-d-glucuronic Acid 4-Epimerase Family from Ornithogalum caudatum.
[So] Source:Molecules;21(11), 2016 Nov 09.
[Is] ISSN:1420-3049
[Cp] País de publicação:Switzerland
[La] Idioma:eng
[Ab] Resumo:d-Galacturonic acid (GalA) is an important component of GalA-containing polysaccharides in . The incorporation of GalA into these polysaccharides from UDP-d-galacturonic acid (UDP-GalA) was reasonably known. However, the cDNAs involved in the biosynthesis of UDP-GalA were still unknown. In the present investigation, one candidate UDP-d-glucuronic acid 4-epimerase (UGlcAE) family with three members was isolated from based on RNA-Seq data. Bioinformatics analyses indicated all of the three isoforms, designated as OcUGlcAE1~3, were members of short-chain dehydrogenases/reductases (SDRs) and shared two conserved motifs. The three full-length cDNAs were then transformed to GS115 for heterologous expression. Data revealed both the supernatant and microsomal fractions from the recombinant expressing can interconvert UDP-GalA and UDP-d-glucuronic acid (UDP-GlcA), while the other two OcUGlcAEs had no activity on UDP-GlcA and UDP-GalA. Furthermore, expression analyses of the three epimerases in varied tissues of were performed by real-time quantitative PCR (RT-qPCR). Results indicated , together with the other two -like genes, was root-specific, displaying highest expression in roots. OcUGlcAE3 was UDP-d-glucuronic acid 4-epimerase and thus deemed to be involved in the biosynthesis of root polysaccharides. Moreover, was proposed to be environmentally induced.
[Mh] Termos MeSH primário: Carboidratos Epimerases
DNA Complementar
Ornithogalum
Proteínas de Plantas
Raízes de Plantas
[Mh] Termos MeSH secundário: Carboidratos Epimerases/biossíntese
Carboidratos Epimerases/genética
Expressão Gênica
Ornithogalum/enzimologia
Ornithogalum/genética
Pichia
Proteínas de Plantas/biossíntese
Proteínas de Plantas/genética
Raízes de Plantas/enzimologia
Raízes de Plantas/genética
Proteínas Recombinantes/biossíntese
Proteínas Recombinantes/genética
Açúcares de Uridina Difosfato/genética
Açúcares de Uridina Difosfato/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (DNA, Complementary); 0 (Plant Proteins); 0 (Recombinant Proteins); 0 (Uridine Diphosphate Sugars); EC 5.1.3.- (Carbohydrate Epimerases)
[Em] Mês de entrada:1704
[Cu] Atualização por classe:170407
[Lr] Data última revisão:
170407
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161112
[St] Status:MEDLINE


  10 / 1007 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
[PMID]:27591771
[Au] Autor:Yin S; Kong JQ
[Ad] Endereço:State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
[Ti] Título:Transcriptome-guided gene isolation and functional characterization of UDP-xylose synthase and UDP-D-apiose/UDP-D-xylose synthase families from Ornithogalum caudatum Ait.
[So] Source:Plant Cell Rep;35(11):2403-2421, 2016 Nov.
[Is] ISSN:1432-203X
[Cp] País de publicação:Germany
[La] Idioma:eng
[Ab] Resumo:KEY MESSAGE: The present study first identified the involvement of OcUAXS2 and OcUXS1-3 in anticancer polysaccharides biosynthesis in O. caudatum. UDP-xylose synthase (UXS) and UDP-D-apiose/UDP-D-xylose synthase (UAXS), both capable of converting UDP-D-glucuronic acid to UDP-D-xylose, are believed to transfer xylosyl residue to anticancer polysaccharides biosynthesis in Ornithogalum caudatum Ait. However, the cDNA isolation and functional characterization of genes encoding the two enzymes from O. caudatum has never been documented. Previously, the transcriptome sequencing of O. caudatum was performed in our laboratory. In this study, a total of six and two unigenes encoding UXS and UAXS were first retrieved based on RNA-Seq data. The eight putative genes were then successfully isolated from transcriptome of O. caudatum by reverse transcription polymerase chain reaction (RT-PCR). Phylogenetic analysis revealed the six putative UXS isoforms can be classified into three types, one soluble and two distinct putative membrane-bound. Moreover, the two UAXS isoenzymes were predicted to be soluble forms. Subsequently, these candidate cDNAs were characterized to be bona fide genes by functional expression in Escherichia coli individually. Although UXS and UAXS catalyzed the same reaction, their biochemical properties varied significantly. It is worth noting that a ratio switch of UDP-D-xylose/UDP-D-apiose for UAXS was established, which is assumed to be helpful for its biotechnological application. Furthermore, a series of mutants were generated to test the function of NAD binding motif GxxGxxG. Most importantly, the present study determined the involvement of OcUAXS2 and OcUXS1-3 in xylose-containing polysaccharides biosynthesis in O. caudatum. These data provide a comprehensive knowledge for UXS and UAXS families in plants.
[Mh] Termos MeSH primário: Carboxiliases/genética
Genes de Plantas
Família Multigênica
Ornithogalum/enzimologia
Ornithogalum/genética
Transcriptoma/genética
Açúcares de Uridina Difosfato/metabolismo
Uridina Difosfato Xilose/metabolismo
[Mh] Termos MeSH secundário: Motivos de Aminoácidos
Sequência de Aminoácidos
Compostos de Amônio/farmacologia
Biocatálise/efeitos dos fármacos
Tampões (Química)
Cálcio/farmacologia
Carboxiliases/química
Carboxiliases/metabolismo
Cromatografia Líquida de Alta Pressão
DNA Complementar/genética
DNA Complementar/isolamento & purificação
Concentração de Íons de Hidrogênio
Cinética
Especificidade de Órgãos/efeitos dos fármacos
Especificidade de Órgãos/genética
Ornithogalum/efeitos dos fármacos
Espectroscopia de Prótons por Ressonância Magnética
RNA Mensageiro/genética
RNA Mensageiro/metabolismo
Proteínas Recombinantes/metabolismo
Alinhamento de Sequência
Análise de Sequência de DNA
Temperatura Ambiente
Transcriptoma/efeitos dos fármacos
Açúcares de Uridina Difosfato/química
Uridina Difosfato Xilose/química
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Ammonium Compounds); 0 (Buffers); 0 (DNA, Complementary); 0 (RNA, Messenger); 0 (Recombinant Proteins); 0 (UDP-apiose); 0 (Uridine Diphosphate Sugars); 3616-06-6 (Uridine Diphosphate Xylose); EC 4.1.1.- (Carboxy-Lyases); EC 4.1.1.35 (UDPglucuronate decarboxylase); SY7Q814VUP (Calcium)
[Em] Mês de entrada:1703
[Cu] Atualização por classe:171004
[Lr] Data última revisão:
171004
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160905
[St] Status:MEDLINE



página 1 de 101 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde