Base de dados : MEDLINE
Pesquisa : D03.633.100.759.646.138.382.300 [Categoria DeCS]
Referências encontradas : 3789 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 379 ir para página                         

  1 / 3789 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29362370
[Au] Autor:Kathayat RS; Cao Y; Elvira PD; Sandoz PA; Zaballa ME; Springer MZ; Drake LE; Macleod KF; van der Goot FG; Dickinson BC
[Ad] Endereço:Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
[Ti] Título:Active and dynamic mitochondrial S-depalmitoylation revealed by targeted fluorescent probes.
[So] Source:Nat Commun;9(1):334, 2018 01 23.
[Is] ISSN:2041-1723
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The reversible modification of cysteine residues by thioester formation with palmitate (S-palmitoylation) is an abundant lipid post-translational modification (PTM) in mammalian systems. S-palmitoylation has been observed on mitochondrial proteins, providing an intriguing potential connection between metabolic lipids and mitochondrial regulation. However, it is unknown whether and/or how mitochondrial S-palmitoylation is regulated. Here we report the development of mitoDPPs, targeted fluorescent probes that measure the activity levels of "erasers" of S-palmitoylation, acyl-protein thioesterases (APTs), within mitochondria of live cells. Using mitoDPPs, we discover active S-depalmitoylation in mitochondria, in part mediated by APT1, an S-depalmitoylase previously thought to reside in the cytosol and on the Golgi apparatus. We also find that perturbation of long-chain acyl-CoA cytoplasm and mitochondrial regulatory proteins, respectively, results in selective responses from cytosolic and mitochondrial S-depalmitoylases. Altogether, this work reveals that mitochondrial S-palmitoylation is actively regulated by "eraser" enzymes that respond to alterations in mitochondrial lipid homeostasis.
[Mh] Termos MeSH primário: Corantes Fluorescentes/metabolismo
Mitocôndrias/metabolismo
Dinâmica Mitocondrial
Tioléster Hidrolases/metabolismo
[Mh] Termos MeSH secundário: Células A549
Acil Coenzima A/metabolismo
Células HEK293
Células HeLa
Seres Humanos
Cinética
Lipoilação
Células MCF-7
Microscopia Confocal
Interferência de RNA
Tioléster Hidrolases/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Acyl Coenzyme A); 0 (Fluorescent Dyes); EC 3.1.2.- (LYPLA1 protein, human); EC 3.1.2.- (Thiolester Hydrolases)
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180305
[Lr] Data última revisão:
180305
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180125
[St] Status:MEDLINE
[do] DOI:10.1038/s41467-017-02655-1


  2 / 3789 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29198706
[Au] Autor:Kim S; Kim KJ
[Ad] Endereço:School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea.
[Ti] Título:Structural insight into the substrate specificity of acyl-CoA oxidase1 from Yarrowia lipolytica for short-chain dicarboxylyl-CoAs.
[So] Source:Biochem Biophys Res Commun;495(2):1628-1634, 2018 01 08.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Acyl-CoA oxidase (ACOX) plays an important role in fatty acid degradation. The enzyme catalyzes the first reaction in peroxisomal fatty acid ß-oxidation by reducing acyl-CoA to 2-trans-enoyl-CoA. The yeast Yarrowia lipolytica is able to utilize fatty acids, fats, and oil as carbon sources to produce valuable bioproducts. We determined the crystal structure of ACOX1 from Y. lipolytica (YlACOX1) at a resolution of 2.5 Å. YlACOX1 forms a homodimer, and the monomeric structure is composed of four domains, the Nα, Nß, Cα1, and Cα2. The FAD cofactor is bound at the dimerization interface between the Nß- and Cα1-domains. The substrate-binding tunnel formed by the interface between the Nα-, Nß-, and Cα1-domains is located proximal to FAD. Amino acid and structural comparisons of YlACOX1 with other ACOXs show that the substrate-binding pocket of YlACOX1 is much smaller than that of the medium- or long-chain ACOXs but is rather similar to that of the short-chain ACOXs. Moreover, the hydrophilicity of residues constituting the end region of the substrate-binding pocket in YlACOX1 is quite similar to those in the short-chain ACOXs but different from those of the medium- or long-chain ACOXs. These observations provide structural insights how YlACOX1 prefers short-chain dicarboxylyl-CoAs as a substrate.
[Mh] Termos MeSH primário: Acil-CoA Oxidase/química
Acil-CoA Oxidase/metabolismo
Proteínas Fúngicas/química
Proteínas Fúngicas/metabolismo
Yarrowia/enzimologia
[Mh] Termos MeSH secundário: Acil Coenzima A/química
Acil Coenzima A/metabolismo
Acil-CoA Oxidase/genética
Sequência de Aminoácidos
Domínio Catalítico
Cristalografia por Raios X
Flavina-Adenina Dinucleotídeo/metabolismo
Proteínas Fúngicas/genética
Interações Hidrofóbicas e Hidrofílicas
Isoenzimas/química
Isoenzimas/genética
Isoenzimas/metabolismo
Modelos Moleculares
Estrutura Quaternária de Proteína
Homologia de Sequência de Aminoácidos
Especificidade por Substrato
Yarrowia/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Acyl Coenzyme A); 0 (Fungal Proteins); 0 (Isoenzymes); 146-14-5 (Flavin-Adenine Dinucleotide); EC 1.3.3.6 (Acyl-CoA Oxidase)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180220
[Lr] Data última revisão:
180220
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171205
[St] Status:MEDLINE


  3 / 3789 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29199980
[Au] Autor:Stewart C; Woods K; Macias G; Allan AC; Hellens RP; Noel JP
[Ad] Endereço:Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
[Ti] Título:Molecular architectures of benzoic acid-specific type III polyketide synthases.
[So] Source:Acta Crystallogr D Struct Biol;73(Pt 12):1007-1019, 2017 Dec 01.
[Is] ISSN:2059-7983
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Biphenyl synthase and benzophenone synthase constitute an evolutionarily distinct clade of type III polyketide synthases (PKSs) that use benzoic acid-derived substrates to produce defense metabolites in plants. The use of benzoyl-CoA as an endogenous substrate is unusual for type III PKSs. Moreover, sequence analyses indicate that the residues responsible for the functional diversification of type III PKSs are mutated in benzoic acid-specific type III PKSs. In order to gain a better understanding of structure-function relationships within the type III PKS family, the crystal structures of biphenyl synthase from Malus × domestica and benzophenone synthase from Hypericum androsaemum were compared with the structure of an archetypal type III PKS: chalcone synthase from Malus × domestica. Both biphenyl synthase and benzophenone synthase contain mutations that reshape their active-site cavities to prevent the binding of 4-coumaroyl-CoA and to favor the binding of small hydrophobic substrates. The active-site cavities of biphenyl synthase and benzophenone synthase also contain a novel pocket associated with their chain-elongation and cyclization reactions. Collectively, these results illuminate structural determinants of benzoic acid-specific type III PKSs and expand the understanding of the evolution of specialized metabolic pathways in plants.
[Mh] Termos MeSH primário: Aciltransferases/química
Hypericum/enzimologia
Malus/enzimologia
[Mh] Termos MeSH secundário: Acil Coenzima A/química
Acil Coenzima A/metabolismo
Aciltransferases/metabolismo
Carbono-Carbono Ligases/química
Carbono-Carbono Ligases/metabolismo
Domínio Catalítico
Clonagem Molecular
Cristalografia por Raios X
Evolução Molecular
Modelos Moleculares
Estrutura Molecular
Filogenia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Acyl Coenzyme A); 6756-74-7 (benzoyl-coenzyme A); EC 2.3.- (Acyltransferases); EC 2.3.1.74 (flavanone synthetase); EC 6.4.- (Carbon-Carbon Ligases); EC 6.4.- (benzophenone synthase)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180213
[Lr] Data última revisão:
180213
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171205
[St] Status:MEDLINE
[do] DOI:10.1107/S2059798317016618


  4 / 3789 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29326245
[Au] Autor:Rana MS; Kumar P; Lee CJ; Verardi R; Rajashankar KR; Banerjee A
[Ad] Endereço:Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
[Ti] Título:Fatty acyl recognition and transfer by an integral membrane -acyltransferase.
[So] Source:Science;359(6372), 2018 01 12.
[Is] ISSN:1095-9203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:DHHC (Asp-His-His-Cys) palmitoyltransferases are eukaryotic integral membrane enzymes that catalyze protein palmitoylation, which is important in a range of physiological processes, including small guanosine triphosphatase (GTPase) signaling, cell adhesion, and neuronal receptor scaffolding. We present crystal structures of two DHHC palmitoyltransferases and a covalent intermediate mimic. The active site resides at the membrane-cytosol interface, which allows the enzyme to catalyze thioester-exchange chemistry by using fatty acyl-coenzyme A and explains why membrane-proximal cysteines are candidates for palmitoylation. The acyl chain binds in a cavity formed by the transmembrane domain. We propose a mechanism for acyl chain-length selectivity in DHHC enzymes on the basis of cavity mutants with preferences for shorter and longer acyl chains.
[Mh] Termos MeSH primário: Acil Coenzima A/metabolismo
Aciltransferases/química
Proteínas de Peixe-Zebra/química
[Mh] Termos MeSH secundário: Aciltransferases/genética
Aciltransferases/metabolismo
Animais
Domínio Catalítico
Cristalização
Cristalografia por Raios X
Cisteína/química
Seres Humanos
Lipoilação
Modelos Moleculares
Mutação
Domínios Proteicos
Estrutura Secundária de Proteína
Especificidade por Substrato
Proteínas de Peixe-Zebra/genética
Proteínas de Peixe-Zebra/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; RESEARCH SUPPORT, N.I.H., INTRAMURAL; RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
[Nm] Nome de substância:
0 (Acyl Coenzyme A); 0 (Zebrafish Proteins); EC 2.3.- (Acyltransferases); EC 2.3.- (ZDHHC20 protein, human); K848JZ4886 (Cysteine)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180207
[Lr] Data última revisão:
180207
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180113
[St] Status:MEDLINE


  5 / 3789 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28450226
[Au] Autor:Hara A; Endo S; Matsunaga T; El-Kabbani O; Miura T; Nishinaka T; Terada T
[Ad] Endereço:Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
[Ti] Título:Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs.
[So] Source:Biochem Pharmacol;138:185-192, 2017 08 15.
[Is] ISSN:1873-2968
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Human carbonyl reductase 1 (CBR1), a member of the short-chain dehydrogenase/reductase (SDR) superfamily, reduces a variety of carbonyl compounds including endogenous isatin, prostaglandin E and 4-oxo-2-nonenal. It is also a major non-cytochrome P450 enzyme in the phase I metabolism of carbonyl-containing drugs, and is highly expressed in the intestine. In this study, we found that long-chain fatty acids and their CoA ester derivatives inhibit CBR1. Among saturated fatty acids, myristic, palmitic and stearic acids were inhibitory, and stearic acid was the most potent (IC 9µM). Unsaturated fatty acids (oleic, elaidic, γ-linolenic and docosahexaenoic acids) and acyl-CoAs (palmitoyl-, stearoyl- and oleoyl-CoAs) were more potent inhibitors (IC 1.0-2.5µM), and showed high inhibitory selectivity to CBR1 over its isozyme CBR3 and other SDR superfamily enzymes (DCXR and DHRS4) with CBR activity. The inhibition by these fatty acids and acyl-CoAs was competitive with respect to the substrate, showing the K values of 0.49-1.2µM. Site-directed mutagenesis of the substrate-binding residues of CBR1 suggested that the interactions between the fatty acyl chain and the enzyme's Met141 and Trp229 are important for the inhibitory selectivity. We also examined CBR1 inhibition by oleic acid in cellular levels: The fatty acid effectively inhibited CBR1-mediated 4-oxo-2-nonenal metabolism in colon cancer DLD1 cells and increased sensitivity to doxorubicin in the drug-resistant gastric cancer MKN45 cells that highly express CBR1. The results suggest a possible new food-drug interaction through inhibition of CBR1-mediated intestinal first-pass drug metabolism by dietary fatty acids.
[Mh] Termos MeSH primário: Acil Coenzima A/metabolismo
Oxirredutases do Álcool/antagonistas & inibidores
Ácidos Graxos não Esterificados/metabolismo
Mucosa Intestinal/enzimologia
[Mh] Termos MeSH secundário: Oxirredutases do Álcool/genética
Oxirredutases do Álcool/metabolismo
Sítios de Ligação
Ligação Competitiva
Linhagem Celular Tumoral
Resistência a Medicamentos Antineoplásicos
Interações Alimento-Droga
Seres Humanos
Mutação
Ácido Mirístico/metabolismo
Proteínas de Neoplasias/antagonistas & inibidores
Proteínas de Neoplasias/metabolismo
Oxirredutases/antagonistas & inibidores
Oxirredutases/genética
Oxirredutases/metabolismo
Ácido Palmítico/metabolismo
Palmitoil Coenzima A/metabolismo
Proteínas Recombinantes/química
Proteínas Recombinantes/metabolismo
Ácidos Esteáricos/metabolismo
Desidrogenase do Álcool de Açúcar/antagonistas & inibidores
Desidrogenase do Álcool de Açúcar/genética
Desidrogenase do Álcool de Açúcar/metabolismo
[Pt] Tipo de publicação:COMPARATIVE STUDY; JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Acyl Coenzyme A); 0 (Fatty Acids, Nonesterified); 0 (Neoplasm Proteins); 0 (Recombinant Proteins); 0 (Stearic Acids); 0I3V7S25AW (Myristic Acid); 1716-06-9 (oleoyl-coenzyme A); 1763-10-6 (Palmitoyl Coenzyme A); 2V16EO95H1 (Palmitic Acid); 362-66-3 (stearoyl-coenzyme A); 4ELV7Z65AP (stearic acid); EC 1.- (Oxidoreductases); EC 1.1.- (Alcohol Oxidoreductases); EC 1.1.- (Sugar Alcohol Dehydrogenases); EC 1.1.1.10 (L-xylulose reductase); EC 1.1.1.184 (CBR1 protein, human); EC 1.1.1.184 (CBR3 protein, human); EC 1.1.1.184 (DHRS4 protein, human)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:180201
[Lr] Data última revisão:
180201
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170429
[St] Status:MEDLINE


  6 / 3789 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27771009
[Au] Autor:Wiens B; De Luca V
[Ad] Endereço:Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, Ontario L2S 3A1, Canada. Electronic address: bw09ep@badger.ac.brocku.ca.
[Ti] Título:Molecular and biochemical characterization of a benzenoid/phenylpropanoid meta/para-O-methyltransferase from Rauwolfia serpentina roots.
[So] Source:Phytochemistry;132:5-15, 2016 Dec.
[Is] ISSN:1873-3700
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The monoterpenoid indole alkaloids, reserpine and rescinnamine contain 3, 4, 5-trimethoxybenzoate or 3, 4, 5-trimethoxycinnamate, respectively, within their structures and they accumulate in different plant organs and particularly within roots of Rauwolfia serpentina. This plant also accumulates acylated sugars substituted with 3, 4, 5-trimethoxybenzoate and 3, 4, 5-trimethoxycinnamate. In the present study, transcriptome and metabolome analyses of R. serpentina roots allowed the identification of 7 candidate O-methytransferase (OMT) genes that might be associated with the formation of 3, 4, 5-trimethoxybenzoate and 3, 4, 5-trimethoxycinnamate and led to the molecular cloning of 4 genes for functional expression and analysis. Two candidate genes were expressed in E. coli and were shown to use different phenolics as methyl acceptors. RsOMT1, a member of the caffeoyl CoA-OMT-like family of genes, converted 3, 5 dimethoxy-4-hydroxycinnamic, caffeic and 3, 4, 5 trihydroxybenzoic acids to trimethoxycinnamic-, ferulic/isoferulic- and 3-methoxy, 4, 5 dihydroxybenzoic or 4-methoxy, 3, 5 dihydroxybenzoic acids, respectively, when supplied with these substrates. RsOMT3, a member of the caffeic acid-OMT-like family of genes, only converted caffeic acid to ferulic acid. Both enzymes showed considerable promiscuity with respect to various flavonoid substrates that they accepted. The para-O-methylation activity of RsOMT1 is quite rare and unusual for plant OMTs. The involvement of RsOMT1 and RsOMT3 in the assembly of trimethoxybenzoic and trimethoxycinnamic acids is discussed.
[Mh] Termos MeSH primário: Metiltransferases/metabolismo
Rauwolfia/enzimologia
[Mh] Termos MeSH secundário: Acil Coenzima A
Benzoatos/metabolismo
Cinamatos/metabolismo
Clonagem Molecular
Ácidos Cumáricos/metabolismo
Escherichia coli/genética
Flavonoides/metabolismo
Estrutura Molecular
Raízes de Plantas/química
Raízes de Plantas/enzimologia
Rauwolfia/genética
Reserpina/análogos & derivados
Reserpina/metabolismo
Alcaloides de Triptamina e Secologanina/metabolismo
Especificidade por Substrato
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Acyl Coenzyme A); 0 (Benzoates); 0 (Cinnamates); 0 (Coumaric Acids); 0 (Flavonoids); 0 (Secologanin Tryptamine Alkaloids); 53034-79-0 (caffeoyl-coenzyme A); 8B1QWR724A (Reserpine); AVM951ZWST (ferulic acid); EC 2.1.1.- (Methyltransferases); K6L9W0QP1W (reserpic acid); Q6W1F7DJ2D (rescinnamine)
[Em] Mês de entrada:1702
[Cu] Atualização por classe:171129
[Lr] Data última revisão:
171129
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161025
[St] Status:MEDLINE


  7 / 3789 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28884816
[Au] Autor:Ferreira R; Gatto F; Nielsen J
[Ad] Endereço:Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden.
[Ti] Título:Exploiting off-targeting in guide-RNAs for CRISPR systems for simultaneous editing of multiple genes.
[So] Source:FEBS Lett;591(20):3288-3295, 2017 Oct.
[Is] ISSN:1873-3468
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Bioinformatics tools to design guide-RNAs (gRNAs) in Clustered Regularly Interspaced Short Palindromic Repeats systems mostly focused on minimizing off-targeting to enhance efficacy of genome editing. However, there are circumstances in which off-targeting might be desirable to target multiple genes simultaneously with a single gRNA. We termed these gRNAs as promiscuous gRNAs. Here, we present a computational workflow to identify promiscuous gRNAs that putatively bind to the region of interest for a defined list of genes in a genome. We experimentally validated two promiscuous gRNA for gene deletion, one targeting FAA1 and FAA4 and one targeting PLB1 and PLB2, thus demonstrating that multiplexed genome editing through design of promiscuous gRNA can be performed in a time and cost-effective manner.
[Mh] Termos MeSH primário: Sistemas CRISPR-Cas
Biologia Computacional/métodos
Edição de Genes/métodos
Genoma Fúngico
RNA Guia/genética
Saccharomyces cerevisiae/genética
[Mh] Termos MeSH secundário: Acil Coenzima A/genética
Acil Coenzima A/metabolismo
Sequência de Bases
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
Coenzima A Ligases/genética
Coenzima A Ligases/metabolismo
Deleção de Genes
Expressão Gênica
Lisofosfolipase/genética
Lisofosfolipase/metabolismo
Proteínas de Membrana/genética
Proteínas de Membrana/metabolismo
RNA Guia/metabolismo
Saccharomyces cerevisiae/metabolismo
Proteínas de Saccharomyces cerevisiae/genética
Proteínas de Saccharomyces cerevisiae/metabolismo
[Pt] Tipo de publicação:LETTER
[Nm] Nome de substância:
0 (Acyl Coenzyme A); 0 (Membrane Proteins); 0 (RNA, Guide); 0 (Saccharomyces cerevisiae Proteins); EC 3.1.1.5 (Lysophospholipase); EC 3.1.1.5 (PLB1 protein, S cerevisiae); EC 3.1.1.5 (PLB2 protein, S cerevisiae); EC 6.2.1.- (Coenzyme A Ligases); EC 6.2.1.- (Faa1 protein, S cerevisiae); EC 6.2.1.3 (FAA4 protein, S cerevisiae)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171031
[Lr] Data última revisão:
171031
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170909
[St] Status:MEDLINE
[do] DOI:10.1002/1873-3468.12835


  8 / 3789 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28845666
[Au] Autor:Paramasivan K; Mutturi S
[Ad] Endereço:Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute , Mysore, India.
[Ti] Título:Regeneration of NADPH Coupled with HMG-CoA Reductase Activity Increases Squalene Synthesis in Saccharomyces cerevisiae.
[So] Source:J Agric Food Chem;65(37):8162-8170, 2017 Sep 20.
[Is] ISSN:1520-5118
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Although overexpression of the tHMG1 gene is a well-known strategy for terpene synthesis in Saccharomyces cerevisiae, the optimal level for tHMG1p has not been established. In the present study, it was observed that two copies of the tHMG1 gene on a dual gene expression cassette improved squalene synthesis in laboratory strain by 16.8-fold in comparison to single-copy expression. It was also observed that tHMG1p is limited by its cofactor (NADPH), as the overexpression of NADPH regenerating genes', viz., ZWF1 and POS5 (full length and without mitochondrial presequence), has led to its increased enzyme activity. Further, it was demonstrated that overexpression of full-length POS5 has improved squalene synthesis in cytosol. Finally, when tHMG1 and full-length POS5 were co-overexpressed there was a net 27.5-fold increase in squalene when compared to control strain. These results suggest novel strategies to increase squalene accumulation in S. cerevisiae.
[Mh] Termos MeSH primário: Acil Coenzima A/metabolismo
Hidroximetilglutaril-CoA Redutases/metabolismo
NADP/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
Saccharomyces cerevisiae/metabolismo
Esqualeno/metabolismo
[Mh] Termos MeSH secundário: Acil Coenzima A/genética
Hidroximetilglutaril-CoA Redutases/genética
Proteínas Mitocondriais/genética
Proteínas Mitocondriais/metabolismo
Fosfotransferases (Aceptor do Grupo Álcool)/genética
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
Saccharomyces cerevisiae/enzimologia
Saccharomyces cerevisiae/genética
Proteínas de Saccharomyces cerevisiae/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Acyl Coenzyme A); 0 (Mitochondrial Proteins); 0 (Saccharomyces cerevisiae Proteins); 1553-55-5 (3-hydroxy-3-methylglutaryl-coenzyme A); 53-59-8 (NADP); 7QWM220FJH (Squalene); EC 1.1.1.- (Hydroxymethylglutaryl CoA Reductases); EC 2.7.1.- (Phosphotransferases (Alcohol Group Acceptor)); EC 2.7.1.86 (POS5 protein, S cerevisiae)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171113
[Lr] Data última revisão:
171113
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170829
[St] Status:MEDLINE
[do] DOI:10.1021/acs.jafc.7b02945


  9 / 3789 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28803779
[Au] Autor:Liu S; Yu H; Liu Y; Liu X; Zhang Y; Bu C; Yuan S; Chen Z; Xie G; Li W; Xu B; Yang J; He L; Jin T; Xiong Y; Sun L; Liu X; Han C; Cheng Z; Liang J; Shang Y
[Ad] Endereço:Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Basic M
[Ti] Título:Chromodomain Protein CDYL Acts as a Crotonyl-CoA Hydratase to Regulate Histone Crotonylation and Spermatogenesis.
[So] Source:Mol Cell;67(5):853-866.e5, 2017 Sep 07.
[Is] ISSN:1097-4164
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Lysine crotonylation (Kcr) is a newly identified histone modification that is associated with active transcription in mammalian cells. Here we report that the chromodomain Y-like transcription corepressor CDYL negatively regulates histone Kcr by acting as a crotonyl-CoA hydratase to convert crotonyl-CoA to ß-hydroxybutyryl-CoA. We showed that the negative regulation of histone Kcr by CDYL is intrinsically linked to its transcription repression activity and functionally implemented in the reactivation of sex chromosome-linked genes in round spermatids and genome-wide histone replacement in elongating spermatids. Significantly, Cdyl transgenic mice manifest dysregulation of histone Kcr and reduction of male fertility with a decreased epididymal sperm count and sperm cell motility. Our study uncovers a biochemical pathway in the regulation of histone Kcr and implicates CDYL-regulated histone Kcr in spermatogenesis, adding to the understanding of the physiology of male reproduction and the mechanism of the spermatogenic failure in AZFc (Azoospermia Factor c)-deleted infertile men.
[Mh] Termos MeSH primário: Acil Coenzima A/metabolismo
Proteínas Correpressoras/metabolismo
Enoil-CoA Hidratase/metabolismo
Histona Acetiltransferases/metabolismo
Histonas/metabolismo
Infertilidade Masculina/enzimologia
Processamento de Proteína Pós-Traducional
Proteínas/metabolismo
Espermatogênese
Espermatozoides/enzimologia
Testículo/enzimologia
[Mh] Termos MeSH secundário: Animais
Proteínas Correpressoras/genética
Enoil-CoA Hidratase/genética
Fertilidade
Predisposição Genética para Doença
Células HeLa
Histona Acetiltransferases/genética
Seres Humanos
Infertilidade Masculina/genética
Infertilidade Masculina/patologia
Infertilidade Masculina/fisiopatologia
Cinética
Lisina
Masculino
Camundongos Endogâmicos C57BL
Camundongos Transgênicos
Fenótipo
Domínios Proteicos
Proteínas/genética
Interferência de RNA
Células Sf9
Contagem de Espermatozoides
Motilidade Espermática
Espermatozoides/patologia
Testículo/patologia
Testículo/fisiopatologia
Transfecção
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Acyl Coenzyme A); 0 (CDYL protein, human); 0 (Co-Repressor Proteins); 0 (Histones); 0 (Proteins); 2871-66-1 (3-hydroxybutyryl-coenzyme A); 992-67-6 (crotonyl-coenzyme A); EC 2.3.1.48 (Cdyl protein, mouse); EC 2.3.1.48 (Histone Acetyltransferases); EC 4.2.1.17 (Enoyl-CoA Hydratase); K3Z4F929H6 (Lysine)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170925
[Lr] Data última revisão:
170925
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170815
[St] Status:MEDLINE


  10 / 3789 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28760847
[Au] Autor:Xu Z; Wang M; Ye BC
[Ad] Endereço:Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
[Ti] Título:TetR Family Transcriptional Regulator PccD Negatively Controls Propionyl Coenzyme A Assimilation in Saccharopolyspora erythraea.
[So] Source:J Bacteriol;199(20), 2017 Oct 15.
[Is] ISSN:1098-5530
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Propanol stimulates erythromycin biosynthesis by increasing the supply of propionyl coenzyme A (propionyl-CoA), a starter unit of erythromycin production in Propionyl-CoA is assimilated via propionyl-CoA carboxylase to methylmalonyl-CoA, an extender unit of erythromycin. We found that the addition of -propanol or propionate caused a 4- to 16-fold increase in the transcriptional levels of the SACE_3398-3400 locus encoding propionyl-CoA carboxylase, a key enzyme in propionate metabolism. The regulator PccD was proved to be directly involved in the transcription regulation of the SACE_3398-3400 locus by EMSA and DNase I footprint analysis. The transcriptional levels of SACE_3398-3400 were upregulated 15- to 37-fold in the gene deletion strain (Δ ) and downregulated 3-fold in the overexpression strain (WT/pIB- ), indicating that PccD was a negative transcriptional regulator of SACE_3398-3400. The Δ strain has a higher growth rate than that of the wild-type strain (WT) on Evans medium with propionate as the sole carbon source, whereas the growth of the WT/pIB- strain was repressed. As a possible metabolite of propionate metabolism, methylmalonic acid was identified as an effector molecule of PccD and repressed its regulatory activity. A higher level of erythromycin in the Δ strain was observed compared with that in the wild-type strain. Our study reveals a regulatory mechanism in propionate metabolism and suggests new possibilities for designing metabolic engineering to increase erythromycin yield. Our work has identified the novel regulator PccD that controls the expression of the gene for propionyl-CoA carboxylase, a key enzyme in propionyl-CoA assimilation in PccD represses the generation of methylmalonyl-CoA through carboxylation of propionyl-CoA and reveals an effect on biosynthesis of erythromycin. This finding provides novel insight into propionyl-CoA assimilation, and extends our understanding of the regulatory mechanisms underlying the biosynthesis of erythromycin.
[Mh] Termos MeSH primário: Acil Coenzima A/biossíntese
Proteínas de Bactérias/metabolismo
Regulação Bacteriana da Expressão Gênica
Proteínas Repressoras/metabolismo
Saccharopolyspora/genética
[Mh] Termos MeSH secundário: 1-Propanol/metabolismo
Proteínas de Bactérias/genética
Pegada de DNA
DNA Bacteriano/metabolismo
Ensaio de Desvio de Mobilidade Eletroforética
Deleção de Genes
Expressão Gênica
Perfilação da Expressão Gênica
Propionatos/metabolismo
Ligação Proteica
Proteínas Repressoras/genética
Saccharopolyspora/metabolismo
Transcrição Genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Acyl Coenzyme A); 0 (Bacterial Proteins); 0 (DNA, Bacterial); 0 (Propionates); 0 (Repressor Proteins); 317-66-8 (propionyl-coenzyme A); 96F264O9SV (1-Propanol)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171015
[Lr] Data última revisão:
171015
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170802
[St] Status:MEDLINE



página 1 de 379 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde