Base de dados : MEDLINE
Pesquisa : D05.500.562.405 [Categoria DeCS]
Referências encontradas : 370 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 37 ir para página                         

  1 / 370 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27777260
[Au] Autor:Fasken MB; Losh JS; Leung SW; Brutus S; Avin B; Vaught JC; Potter-Birriel J; Craig T; Conn GL; Mills-Lujan K; Corbett AH; van Hoof A
[Ad] Endereço:Department of Biology, Emory University, Atlanta, Georgia 30322.
[Ti] Título:Insight into the RNA Exosome Complex Through Modeling Pontocerebellar Hypoplasia Type 1b Disease Mutations in Yeast.
[So] Source:Genetics;205(1):221-237, 2017 01.
[Is] ISSN:1943-2631
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Pontocerebellar hypoplasia type 1b (PCH1b) is an autosomal recessive disorder that causes cerebellar hypoplasia and spinal motor neuron degeneration, leading to mortality in early childhood. PCH1b is caused by mutations in the RNA exosome subunit gene, EXOSC3 The RNA exosome is an evolutionarily conserved complex, consisting of nine different core subunits, and one or two 3'-5' exoribonuclease subunits, that mediates several RNA degradation and processing steps. The goal of this study is to assess the functional consequences of the amino acid substitutions that have been identified in EXOSC3 in PCH1b patients. To analyze these EXOSC3 substitutions, we generated the corresponding amino acid substitutions in the Saccharomyces cerevisiae ortholog of EXOSC3, Rrp40 We find that the rrp40 variants corresponding to EXOSC3-G31A and -D132A do not affect yeast function when expressed as the sole copy of the essential Rrp40 protein. In contrast, the rrp40-W195R variant, corresponding to EXOSC3-W238R in PCH1b patients, impacts cell growth and RNA exosome function when expressed as the sole copy of Rrp40 The rrp40-W195R protein is unstable, and does not associate efficiently with the RNA exosome in cells that also express wild-type Rrp40 Consistent with these findings in yeast, the levels of mouse EXOSC3 variants are reduced compared to wild-type EXOSC3 in a neuronal cell line. These data suggest that cells possess a mechanism for optimal assembly of functional RNA exosome complex that can discriminate between wild-type and variant exosome subunits. Budding yeast can therefore serve as a useful tool to understand the molecular defects in the RNA exosome caused by PCH1b-associated amino acid substitutions in EXOSC3, and potentially extending to disease-associated substitutions in other exosome subunits.
[Mh] Termos MeSH primário: Doenças Cerebelares/genética
Complexo Multienzimático de Ribonucleases do Exossomo/genética
Mutação
Saccharomyces cerevisiae/genética
[Mh] Termos MeSH secundário: Doenças Cerebelares/metabolismo
Exorribonucleases/genética
Exorribonucleases/metabolismo
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
Estabilidade de RNA
Proteínas de Ligação a RNA/genética
Proteínas de Ligação a RNA/metabolismo
Saccharomyces cerevisiae/metabolismo
Proteínas de Saccharomyces cerevisiae/genética
Proteínas de Saccharomyces cerevisiae/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T; RESEARCH SUPPORT, N.I.H., EXTRAMURAL
[Nm] Nome de substância:
0 (RNA-Binding Proteins); 0 (Saccharomyces cerevisiae Proteins); EC 3.1.- (Exoribonucleases); EC 3.1.- (Exosome Multienzyme Ribonuclease Complex); EC 3.1.- (Rrp40 protein, S cerevisiae)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:180101
[Lr] Data última revisão:
180101
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161027
[St] Status:MEDLINE
[do] DOI:10.1534/genetics.116.195917


  2 / 370 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28986250
[Au] Autor:Wang N; Wang L; Yang Y; Gong L; Xiao B; Liu X
[Ad] Endereço:Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China. Electronic address: wangn0115@tmmu.edu.cn.
[Ti] Título:A serum exosomal microRNA panel as a potential biomarker test for gastric cancer.
[So] Source:Biochem Biophys Res Commun;493(3):1322-1328, 2017 Nov 25.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The findings from several studies have suggested that circulating miRNAs are imbalanced with the genesis of gastric cancer (GC). Both normal and cancer cells can generate and secrete exosomes, which are nanosized membrane vesicles that can transport microRNAs and proteins. Emerging evidence indicates that the exosomes secreted by cancer cells can be released into the circulatory system. In this study, we investigated whether circulating exosomal miRNAs can be used to discriminate individuals with GC from healthy controls (NCs). Based on the quantitative reverse transcription polymerase chain reaction (qRT-PCR), four miRNAs (miR-19b-3p, miR-17-5p, miR-30a-5p, and miR-106a-5p) related to GC pathogenesis were identified in serum-circulating exosomes from a cohort of 20 healthy controls and 20 individuals with GC in the initial screening phase. The distinguished miRNAs were further validated in the training (90 GC vs. 90 NCs) and blinded phases 20 GC vs. 20 NCs), and the area under receiver operating characteristic (ROC) curves of these miRNAs were analyzed. We found that miR-19b and miR-106a were markedly overexpressed in individuals with GC compared to NCs (P < 0.0001). Besides, the ROC analyses yielded the AUC values of 0.786 for miR-106a-5p, 0.769 for miR-19b-3p and combined ROC analysis revealed the highest AUC value of 0.814 in discriminating GC patients from NCs. Furthermore, based on the model developed from the data, a signature composed of the 2 miRNAs (miR-19b-3p and miR-106a-5p) correctly discriminated 19 out of 20 GC serum samples (95% sensitivity) and 18 out of 20 normal samples (90% specificity) in the blinded phase. Moreover, the validated miRNAs were related to GC lymphatic metastasis (P < 0.01) and expressed at higher levels in stages III and IV compared to I and II stages (P < 0.05). These results suggest that serum exosomal miR-19b-3p and miR-106a-5p are novel potential biomarkers for detecting GC.
[Mh] Termos MeSH primário: Biomarcadores Tumorais/genética
Complexo Multienzimático de Ribonucleases do Exossomo/sangue
MicroRNAs/sangue
Neoplasias Gástricas/genética
[Mh] Termos MeSH secundário: Idoso
Western Blotting
Estudos de Casos e Controles
Feminino
Regulação Neoplásica da Expressão Gênica
Seres Humanos
Masculino
Microscopia Eletrônica de Transmissão
Meia-Idade
Reação em Cadeia da Polimerase em Tempo Real
Reprodutibilidade dos Testes
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Biomarkers, Tumor); 0 (MIRN106 microRNA, human); 0 (MIRN19 microRNA, human); 0 (MicroRNAs); EC 3.1.- (Exosome Multienzyme Ribonuclease Complex)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171027
[Lr] Data última revisão:
171027
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171008
[St] Status:MEDLINE


  3 / 370 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28801509
[Au] Autor:Fan J; Kuai B; Wu G; Wu X; Chi B; Wang L; Wang K; Shi Z; Zhang H; Chen S; He Z; Wang S; Zhou Z; Li G; Cheng H
[Ad] Endereço:State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
[Ti] Título:Exosome cofactor hMTR4 competes with export adaptor ALYREF to ensure balanced nuclear RNA pools for degradation and export.
[So] Source:EMBO J;36(19):2870-2886, 2017 Oct 02.
[Is] ISSN:1460-2075
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The exosome is a key RNA machine that functions in the degradation of unwanted RNAs. Here, we found that significant fractions of precursors and mature forms of mRNAs and long noncoding RNAs are degraded by the nuclear exosome in normal human cells. Exosome-mediated degradation of these RNAs requires its cofactor hMTR4. Significantly, hMTR4 plays a key role in specifically recruiting the exosome to its targets. Furthermore, we provide several lines of evidence indicating that hMTR4 executes this role by directly competing with the mRNA export adaptor ALYREF for associating with ARS2, a component of the cap-binding complex (CBC), and this competition is critical for determining whether an RNA is degraded or exported to the cytoplasm. Together, our results indicate that the competition between hMTR4 and ALYREF determines exosome recruitment and functions in creating balanced nuclear RNA pools for degradation and export.
[Mh] Termos MeSH primário: Proteínas Nucleares/metabolismo
RNA Helicases/metabolismo
Estabilidade de RNA
Transporte de RNA/genética
RNA Nuclear/metabolismo
Proteínas de Ligação a RNA/metabolismo
Fatores de Transcrição/metabolismo
[Mh] Termos MeSH secundário: Transporte Ativo do Núcleo Celular/genética
Complexo Multienzimático de Ribonucleases do Exossomo/genética
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
Exossomos/genética
Exossomos/metabolismo
Técnicas de Silenciamento de Genes
Células HEK293
Células HeLa
Seres Humanos
Proteínas Nucleares/genética
Ligação Proteica
RNA Helicases/genética
Estabilidade de RNA/genética
RNA Longo não Codificante/metabolismo
RNA Mensageiro/metabolismo
Proteínas de Ligação a RNA/genética
Fatores de Transcrição/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (ALYREF protein, human); 0 (Nuclear Proteins); 0 (RNA, Long Noncoding); 0 (RNA, Messenger); 0 (RNA, Nuclear); 0 (RNA-Binding Proteins); 0 (Transcription Factors); EC 3.1.- (Exosome Multienzyme Ribonuclease Complex); EC 3.6.1.- (SKIV2L2 protein, human); EC 3.6.4.13 (RNA Helicases)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171013
[Lr] Data última revisão:
171013
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170813
[St] Status:MEDLINE
[do] DOI:10.15252/embj.201696139


  4 / 370 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28539363
[Au] Autor:Gonzales-Zubiate FA; Okuda EK; Da Cunha JPC; Oliveira CC
[Ad] Endereço:From the Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000 SP, Brazil and.
[Ti] Título:Identification of karyopherins involved in the nuclear import of RNA exosome subunit Rrp6 in .
[So] Source:J Biol Chem;292(29):12267-12284, 2017 Jul 21.
[Is] ISSN:1083-351X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The exosome is a conserved multiprotein complex essential for RNA processing and degradation. The nuclear exosome is a key factor for pre-rRNA processing through the activity of its catalytic subunits, Rrp6 and Rrp44. In , Rrp6 is exclusively nuclear and has been shown to interact with exosome cofactors. With the aim of analyzing proteins associated with the nuclear exosome, in this work, we purified the complex with Rrp6-TAP, identified the co-purified proteins by mass spectrometry, and found karyopherins to be one of the major groups of proteins enriched in the samples. By investigating the biological importance of these protein interactions, we identified Srp1, Kap95, and Sxm1 as the most important karyopherins for Rrp6 nuclear import and the nuclear localization signals recognized by them. Based on the results shown here, we propose a model of multiple pathways for the transport of Rrp6 to the nucleus.
[Mh] Termos MeSH primário: Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
Exossomos/metabolismo
Carioferinas/metabolismo
Sinais de Localização Nuclear/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
Saccharomyces cerevisiae/metabolismo
beta Carioferinas/metabolismo
[Mh] Termos MeSH secundário: Transporte Ativo do Núcleo Celular
Complexo Multienzimático de Ribonucleases do Exossomo/química
Complexo Multienzimático de Ribonucleases do Exossomo/genética
Exossomos/enzimologia
Deleção de Genes
Proteínas de Fluorescência Verde/genética
Proteínas de Fluorescência Verde/metabolismo
Carioferinas/química
Carioferinas/genética
Microscopia Confocal
Microscopia de Fluorescência
Sinais de Localização Nuclear/química
Sinais de Localização Nuclear/genética
Fragmentos de Peptídeos/química
Fragmentos de Peptídeos/genética
Fragmentos de Peptídeos/metabolismo
Domínios e Motivos de Interação entre Proteínas
Proteínas Recombinantes de Fusão/química
Proteínas Recombinantes de Fusão/metabolismo
Proteínas Recombinantes/química
Proteínas Recombinantes/metabolismo
Saccharomyces cerevisiae/citologia
Saccharomyces cerevisiae/enzimologia
Proteínas de Saccharomyces cerevisiae/química
Proteínas de Saccharomyces cerevisiae/genética
beta Carioferinas/química
beta Carioferinas/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (KAP95 protein, S cerevisiae); 0 (Karyopherins); 0 (Nuclear Localization Signals); 0 (Peptide Fragments); 0 (Recombinant Fusion Proteins); 0 (Recombinant Proteins); 0 (SXM1 protein, S cerevisiae); 0 (Saccharomyces cerevisiae Proteins); 0 (Srp1 protein, S cerevisiae); 0 (beta Karyopherins); 147336-22-9 (Green Fluorescent Proteins); EC 3.1.- (Exosome Multienzyme Ribonuclease Complex); EC 3.1.13.- (RRP6 protein, S cerevisiae)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170808
[Lr] Data última revisão:
170808
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170526
[St] Status:MEDLINE
[do] DOI:10.1074/jbc.M116.772376


  5 / 370 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28475896
[Au] Autor:Rialdi A; Hultquist J; Jimenez-Morales D; Peralta Z; Campisi L; Fenouil R; Moshkina N; Wang ZZ; Laffleur B; Kaake RM; McGregor MJ; Haas K; Pefanis E; Albrecht RA; Pache L; Chanda S; Jen J; Ochando J; Byun M; Basu U; García-Sastre A; Krogan N; van Bakel H; Marazzi I
[Ad] Endereço:Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA.
[Ti] Título:The RNA Exosome Syncs IAV-RNAPII Transcription to Promote Viral Ribogenesis and Infectivity.
[So] Source:Cell;169(4):679-692.e14, 2017 May 04.
[Is] ISSN:1097-4172
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The nuclear RNA exosome is an essential multi-subunit complex that controls RNA homeostasis. Congenital mutations in RNA exosome genes are associated with neurodegenerative diseases. Little is known about the role of the RNA exosome in the cellular response to pathogens. Here, using NGS and human and mouse genetics, we show that influenza A virus (IAV) ribogenesis and growth are suppressed by impaired RNA exosome activity. Mechanistically, the nuclear RNA exosome coordinates the initial steps of viral transcription with RNAPII at host promoters. The viral polymerase complex co-opts the nuclear RNA exosome complex and cellular RNAs en route to 3' end degradation. Exosome deficiency uncouples chromatin targeting of the viral polymerase complex and the formation of cellular:viral RNA hybrids, which are essential RNA intermediates that license transcription of antisense genomic viral RNAs. Our results suggest that evolutionary arms races have shaped the cellular RNA quality control machinery.
[Mh] Termos MeSH primário: Interações Hospedeiro-Patógeno
Vírus da Influenza A Subtipo H1N1/fisiologia
Vírus da Influenza A Subtipo H3N2/fisiologia
Influenza Humana/virologia
RNA Polimerase II/metabolismo
[Mh] Termos MeSH secundário: Células A549
Animais
Imunoprecipitação da Cromatina
Exorribonucleases/genética
Complexo Multienzimático de Ribonucleases do Exossomo/genética
Exossomos/metabolismo
Seres Humanos
Espectrometria de Massas
Camundongos
Mutação
Doenças Neurodegenerativas/virologia
Proteínas de Ligação a RNA/genética
Ribossomos/genética
Transcrição Genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (EXOSC3 protein, human); 0 (RNA-Binding Proteins); EC 2.7.7.- (RNA Polymerase II); EC 3.1.- (Exoribonucleases); EC 3.1.- (Exosome Multienzyme Ribonuclease Complex); EC 3.1.13.- (EXOSC10 protein, human)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:170703
[Lr] Data última revisão:
170703
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170506
[St] Status:MEDLINE


  6 / 370 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28431250
[Au] Autor:Lim J; Giri PK; Kazadi D; Laffleur B; Zhang W; Grinstein V; Pefanis E; Brown LM; Ladewig E; Martin O; Chen Y; Rabadan R; Boyer F; Rothschild G; Cogné M; Pinaud E; Deng H; Basu U
[Ad] Endereço:Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
[Ti] Título:Nuclear Proximity of Mtr4 to RNA Exosome Restricts DNA Mutational Asymmetry.
[So] Source:Cell;169(3):523-537.e15, 2017 Apr 20.
[Is] ISSN:1097-4172
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The distribution of sense and antisense strand DNA mutations on transcribed duplex DNA contributes to the development of immune and neural systems along with the progression of cancer. Because developmentally matured B cells undergo biologically programmed strand-specific DNA mutagenesis at focal DNA/RNA hybrid structures, they make a convenient system to investigate strand-specific mutagenesis mechanisms. We demonstrate that the sense and antisense strand DNA mutagenesis at the immunoglobulin heavy chain locus and some other regions of the B cell genome depends upon localized RNA processing protein complex formation in the nucleus. Both the physical proximity and coupled activities of RNA helicase Mtr4 (and senataxin) with the noncoding RNA processing function of RNA exosome determine the strand-specific distribution of DNA mutations. Our study suggests that strand-specific DNA mutagenesis-associated mechanisms will play major roles in other undiscovered aspects of organismic development.
[Mh] Termos MeSH primário: Linfócitos B/metabolismo
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
Mutação
Proteínas Nucleares/metabolismo
Proteínas de Ligação a RNA/metabolismo
[Mh] Termos MeSH secundário: Animais
Núcleo Celular/metabolismo
DNA Helicases/metabolismo
Exorribonucleases/genética
Instabilidade Genômica
Cadeias Pesadas de Imunoglobulinas/genética
Camundongos
Proteínas Nucleares/genética
Processamento Pós-Transcricional do RNA
Proteínas de Ligação a RNA/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Immunoglobulin Heavy Chains); 0 (Nuclear Proteins); 0 (RNA-Binding Proteins); 0 (SKIV2L2 protein, mouse); EC 3.1.- (Exoribonucleases); EC 3.1.- (Exosome Multienzyme Ribonuclease Complex); EC 3.6.1.- (SETX protein, mouse); EC 3.6.4.- (DNA Helicases)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:171114
[Lr] Data última revisão:
171114
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170422
[St] Status:MEDLINE


  7 / 370 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28355211
[Au] Autor:Delan-Forino C; Schneider C; Tollervey D
[Ad] Endereço:Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom.
[Ti] Título:Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex.
[So] Source:PLoS Genet;13(3):e1006699, 2017 Mar.
[Is] ISSN:1553-7404
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The RNA exosome complex functions in both the accurate processing and rapid degradation of many classes of RNA. Functional and structural analyses indicate that RNA can either be threaded through the central channel of the exosome or more directly access the active sites of the ribonucleases Rrp44 and Rrp6, but it was unclear how many substrates follow each pathway in vivo. We used CRAC (UV crosslinking and analysis of cDNA) in growing cells to identify transcriptome-wide interactions of RNAs with the major nuclear exosome-cofactor Mtr4 and with individual exosome subunits (Rrp6, Csl4, Rrp41 and Rrp44) along the threaded RNA path. We compared exosome complexes lacking Rrp44 exonuclease activity, carrying a mutation in the Rrp44 S1 RNA-binding domain predicted to disfavor direct access, or with multiple mutations in Rrp41 reported to impede RNA access to the central channel in vitro. Preferential use of channel-threading was seen for mRNAs, 5S rRNA, scR1 (SRP) and aborted tRNAs transcripts. Conversely, pre-tRNAs preferentially accessed Rrp44 directly. Both routes participated in degradation and maturation of RNAPI transcripts, with hand-over during processing. Rrp41 mutations blocked substrate passage through the channel to Rrp44 only for cytoplasmic mRNAs, supporting the predicted widening of the lumen in the Rrp6-associated, nuclear complex. Many exosome substrates exhibited clear preferences for a specific path to Rrp44. Other targets showed redundancy, possibly allowing the efficient handling of highly diverse RNA-protein complexes and RNA structures. Both threading and direct access routes involve the RNA helicase Mtr4. mRNAs that are predominately nuclear or cytoplasmic exosome substrates can be distinguished in vivo.
[Mh] Termos MeSH primário: RNA Helicases DEAD-box/genética
Complexo Multienzimático de Ribonucleases do Exossomo/genética
Proteínas de Saccharomyces cerevisiae/genética
[Mh] Termos MeSH secundário: Domínio Catalítico/genética
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
Exossomos/genética
Perfilação da Expressão Gênica
Regulação da Expressão Gênica
Proteínas Nucleares/genética
RNA/genética
RNA Mensageiro/biossíntese
RNA Mensageiro/genética
Saccharomyces cerevisiae/genética
Transcriptoma/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (CSL4 protein, S cerevisiae); 0 (Nuclear Proteins); 0 (RNA, Messenger); 0 (SKI6 protein, S cerevisiae); 0 (Saccharomyces cerevisiae Proteins); 63231-63-0 (RNA); EC 3.1.- (Exosome Multienzyme Ribonuclease Complex); EC 3.1.13.- (DIS3 protein, S cerevisiae); EC 3.1.13.- (RRP6 protein, S cerevisiae); EC 3.6.1.- (MTR4 protein, S cerevisiae); EC 3.6.4.13 (DEAD-box RNA Helicases)
[Em] Mês de entrada:1704
[Cu] Atualização por classe:170504
[Lr] Data última revisão:
170504
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170330
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pgen.1006699


  8 / 370 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28193672
[Au] Autor:Guydosh NR; Green R
[Ad] Endereço:Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
[Ti] Título:Translation of poly(A) tails leads to precise mRNA cleavage.
[So] Source:RNA;23(5):749-761, 2017 May.
[Is] ISSN:1469-9001
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Translation of poly(A) tails leads to mRNA cleavage but the mechanism and global pervasiveness of this "nonstop/no-go" decay process is not understood. Here we performed ribosome profiling (in a yeast strain lacking exosome function) of short 15-18 nucleotides mRNA footprints to identify ribosomes stalled at 3' ends of mRNA decay intermediates. In this background, we found mRNA cleavage extending hundreds of nucleotides upstream of ribosome stalling in poly(A) and predominantly in one reading frame. These observations suggest that decay-triggering endonucleolytic cleavage is closely associated with the ribosome. Surprisingly, ribosomes appeared to accumulate (i.e., stall) in the transcriptome when as few as three consecutive ORF-internal lysine codons were positioned in the A, P, and E sites though significant mRNA degradation was not observed. Endonucleolytic cleavage was found, however, at sites of premature polyadenylation (encoding polylysine) and rescue of the ribosomes stalled at these sites was dependent on Dom34. These results suggest this process may be critical when changes in the polyadenylation site occur during development, tumorigenesis, or when translation termination/recycling is impaired.
[Mh] Termos MeSH primário: Poli A/metabolismo
Biossíntese de Proteínas
Estabilidade de RNA
RNA Mensageiro/metabolismo
[Mh] Termos MeSH secundário: Proteínas de Ciclo Celular/genética
Endorribonucleases/genética
Endorribonucleases/metabolismo
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
Poliadenilação
Polilisina/metabolismo
Clivagem do RNA
Ribossomos/metabolismo
Saccharomyces cerevisiae/enzimologia
Saccharomyces cerevisiae/genética
Saccharomyces cerevisiae/metabolismo
Proteínas de Saccharomyces cerevisiae/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Cell Cycle Proteins); 0 (RNA, Messenger); 0 (Saccharomyces cerevisiae Proteins); 24937-83-5 (Poly A); 25104-18-1 (Polylysine); EC 3.1.- (Dom34 protein, S cerevisiae); EC 3.1.- (Endoribonucleases); EC 3.1.- (Exosome Multienzyme Ribonuclease Complex)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170609
[Lr] Data última revisão:
170609
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170215
[St] Status:MEDLINE
[do] DOI:10.1261/rna.060418.116


  9 / 370 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28160602
[Au] Autor:Cesena D; Cassani C; Rizzo E; Lisby M; Bonetti D; Longhese MP
[Ad] Endereço:Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy.
[Ti] Título:Regulation of telomere metabolism by the RNA processing protein Xrn1.
[So] Source:Nucleic Acids Res;45(7):3860-3874, 2017 Apr 20.
[Is] ISSN:1362-4962
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Telomeric DNA consists of repetitive G-rich sequences that terminate with a 3΄-ended single stranded overhang (G-tail), which is important for telomere extension by telomerase. Several proteins, including the CST complex, are necessary to maintain telomere structure and length in both yeast and mammals. Emerging evidence indicates that RNA processing factors play critical, yet poorly understood, roles in telomere metabolism. Here, we show that the lack of the RNA processing proteins Xrn1 or Rrp6 partially bypasses the requirement for the CST component Cdc13 in telomere protection by attenuating the activation of the DNA damage checkpoint. Xrn1 is necessary for checkpoint activation upon telomere uncapping because it promotes the generation of single-stranded DNA. Moreover, Xrn1 maintains telomere length by promoting the association of Cdc13 to telomeres independently of ssDNA generation and exerts this function by downregulating the transcript encoding the telomerase inhibitor Rif1. These findings reveal novel roles for RNA processing proteins in the regulation of telomere metabolism with implications for genome stability in eukaryotes.
[Mh] Termos MeSH primário: Exorribonucleases/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
Homeostase do Telômero
Telômero/metabolismo
[Mh] Termos MeSH secundário: DNA de Cadeia Simples/metabolismo
Exorribonucleases/genética
Exorribonucleases/fisiologia
Complexo Multienzimático de Ribonucleases do Exossomo/genética
Complexo Multienzimático de Ribonucleases do Exossomo/fisiologia
Mutação
Processamento Pós-Transcricional do RNA
Proteínas Repressoras/metabolismo
Proteínas de Saccharomyces cerevisiae/genética
Proteínas de Saccharomyces cerevisiae/fisiologia
Proteínas de Ligação a Telômeros/genética
Proteínas de Ligação a Telômeros/metabolismo
Temperatura Ambiente
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Cdc13 protein, S cerevisiae); 0 (DNA, Single-Stranded); 0 (Repressor Proteins); 0 (Saccharomyces cerevisiae Proteins); 0 (Telomere-Binding Proteins); 146589-82-4 (RIF1 protein, S cerevisiae); EC 3.1.- (Exoribonucleases); EC 3.1.- (Exosome Multienzyme Ribonuclease Complex); EC 3.1.11.- (XRN1 protein, S cerevisiae); EC 3.1.13.- (RRP6 protein, S cerevisiae)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171005
[Lr] Data última revisão:
171005
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170205
[St] Status:MEDLINE
[do] DOI:10.1093/nar/gkx072


  10 / 370 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28053271
[Au] Autor:Gillespie A; Gabunilas J; Jen JC; Chanfreau GF
[Ad] Endereço:Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095-1569, USA.
[Ti] Título:Mutations of EXOSC3/Rrp40p associated with neurological diseases impact ribosomal RNA processing functions of the exosome in .
[So] Source:RNA;23(4):466-472, 2017 Apr.
[Is] ISSN:1469-9001
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The RNA exosome is a conserved multiprotein complex that achieves a large number of processive and degradative functions in eukaryotic cells. Recently, mutations have been mapped to the gene encoding one of the subunits of the exosome, EXOSC3 (yeast Rrp40p), which results in pontocerebellar hypoplasia with motor neuron degeneration in human patients. However, the molecular impact of these mutations in the pathology of these diseases is not well understood. To investigate the molecular consequences of mutations in that lead to neurological diseases, we analyzed the effect of three of the mutations that affect conserved residues of EXOSC3/Rrp40p (G31A, G191C, and W238R; G8A, G148C, and W195R, respectively, in human and yeast) in We show that the severity of the phenotypes of these mutations in yeast correlate with that of the disease in human patients, with the W195R mutant showing the strongest growth and RNA processing phenotypes. Furthermore, we show that these mutations affect more severely pre-ribosomal RNA processing functions of the exosome rather than other nuclear processing or surveillance functions. These results suggest that delayed or defective pre-rRNA processing might be the primary defect responsible for the pathologies detected in patients with mutations affecting EXOSC3 function in residues conserved throughout eukaryotes.
[Mh] Termos MeSH primário: Complexo Multienzimático de Ribonucleases do Exossomo/genética
Mutação
Precursores de RNA/genética
Processamento Pós-Transcricional do RNA
RNA Fúngico/genética
RNA Ribossômico/genética
Proteínas de Saccharomyces cerevisiae/genética
Saccharomyces cerevisiae/genética
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Substituição de Aminoácidos
Sítios de Ligação
Sequência Conservada
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo
Regulação Fúngica da Expressão Gênica
Seres Humanos
Atrofias Olivopontocerebelares/genética
Atrofias Olivopontocerebelares/metabolismo
Atrofias Olivopontocerebelares/patologia
Ligação Proteica
Conformação Proteica em alfa-Hélice
Conformação Proteica em Folha beta
Domínios e Motivos de Interação entre Proteínas
Precursores de RNA/metabolismo
RNA Fúngico/metabolismo
RNA Ribossômico/metabolismo
Proteínas de Ligação a RNA/genética
Proteínas de Ligação a RNA/metabolismo
Saccharomyces cerevisiae/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
Alinhamento de Sequência
Homologia de Sequência de Aminoácidos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (EXOSC3 protein, human); 0 (RNA Precursors); 0 (RNA, Fungal); 0 (RNA, Ribosomal); 0 (RNA-Binding Proteins); 0 (Saccharomyces cerevisiae Proteins); EC 3.1.- (Exosome Multienzyme Ribonuclease Complex); EC 3.1.- (Rrp40 protein, S cerevisiae)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170906
[Lr] Data última revisão:
170906
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170106
[St] Status:MEDLINE
[do] DOI:10.1261/rna.060004.116



página 1 de 37 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde