Base de dados : MEDLINE
Pesquisa : D08.811.277.352.355.350.725 [Categoria DeCS]
Referências encontradas : 1139 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 114 ir para página                         

  1 / 1139 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27213717
[Au] Autor:Ginn C; Choi JW; Brocchini S
[Ad] Endereço:UCL School of Pharmacy, London, UK.
[Ti] Título:Disulfide-bridging PEGylation during refolding for the more efficient production of modified proteins.
[So] Source:Biotechnol J;11(8):1088-99, 2016 Aug.
[Is] ISSN:1860-7314
[Cp] País de publicação:Germany
[La] Idioma:eng
[Ab] Resumo:Proteins that are modified by chemical conjugation require at least two separate purification processes. First the bulk protein is purified, and then after chemical conjugation, a second purification process is required to obtain the modified protein. In an effort to develop new enabling technologies to integrate bioprocessing and protein modification, we describe the use of disulfide-bridging conjugation to conduct PEGylation during protein refolding. Preliminary experiments using a PEG-mono-sulfone reagent with partially unfolded leptin and unfolded RNAse T1 indicated that the cysteine thiols underwent disulfide-bridging conjugation to give the PEGylated proteins. Interferon-ß1b (IFN-ß1b) was then expressed in E.coli as inclusion bodies and found to undergo disulfide bridging-conjugation during refolding. The PEG-IFN-ß1b was isolated by ion-exchange chromatography and displayed in vitro biological activity. In the absence of the PEGylation reagent, IFN-ß1b refolding was less efficient and yielded protein aggregates. No PEGylation was observed if the cysteines on IFN-ß1b were first modified with iodoacetamide prior to refolding. Our results demonstrate that the simultaneous refolding and disulfide bridging PEGylation of proteins could be a useful strategy in the development of affordable modified protein therapeutics.
[Mh] Termos MeSH primário: Dissulfetos/química
Polietilenoglicóis/química
Proteínas/química
Proteínas/isolamento & purificação
[Mh] Termos MeSH secundário: Cromatografia por Troca Iônica
Cisteína/química
Interferon beta-1b/química
Interferon beta-1b/isolamento & purificação
Modelos Moleculares
Estrutura Molecular
Redobramento de Proteína
Ribonuclease T1/química
Ribonuclease T1/isolamento & purificação
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Disulfides); 0 (Proteins); 145155-23-3 (Interferon beta-1b); 30IQX730WE (Polyethylene Glycols); EC 3.1.27.3 (Ribonuclease T1); K848JZ4886 (Cysteine)
[Em] Mês de entrada:1701
[Cu] Atualização por classe:170117
[Lr] Data última revisão:
170117
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160524
[St] Status:MEDLINE
[do] DOI:10.1002/biot.201600035


  2 / 1139 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27151561
[Au] Autor:Ichishima E
[Ad] Endereço:a Department of Applied Biological Chemistry , Tohoku University , Sendai , Japan.
[Ti] Título:Development of enzyme technology for Aspergillus oryzae, A. sojae, and A. luchuensis, the national microorganisms of Japan.
[So] Source:Biosci Biotechnol Biochem;80(9):1681-92, 2016 Sep.
[Is] ISSN:1347-6947
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:This paper describes the modern enzymology in Japanese bioindustries. The invention of Takadiastase by Jokiti Takamine in 1894 has revolutionized the world of industrial enzyme production by fermentation. In 1949, a new γ-amylase (glucan 1,4-α-glucosidase, EC 3.2.1.3) from A. luchuensis (formerly designated as A. awamori), was found by Kitahara. RNase T1 (guanyloribonuclease, EC 3.1.27.3) was discovered by Sato and Egami. Ando discovered Aspergillus nuclease S1 (single-stranded nucleate endonuclease, EC 3.1.30.1). Aspergillopepsin I (EC 3.4.23.18) from A. tubingensis (formerly designated as A. saitoi) activates trypsinogen to trypsin. Shintani et al. demonstrated Asp76 of aspergillopepsin I as the binding site for the basic substrate, trypsinogen. The new oligosaccharide moieties Man10GlcNAc2 and Man11GlcNAc2 were identified with α-1,2-mannosidase (EC 3.2.1.113) from A. tubingensis. A yeast mutant compatible of producing Man5GlcNAc2 human compatible sugar chains on glycoproteins was constructed. The acid activation of protyrosinase from A. oryzae at pH 3.0 was resolved. The hyper-protein production system of glucoamylase was established in a submerged culture.
[Mh] Termos MeSH primário: Aspergillus oryzae/enzimologia
Biotecnologia
Fermentação
[Mh] Termos MeSH secundário: Ácido Aspártico Endopeptidases/isolamento & purificação
Ácido Aspártico Endopeptidases/metabolismo
Aspergillus oryzae/metabolismo
Proteínas Fúngicas/isolamento & purificação
Proteínas Fúngicas/metabolismo
Glucana 1,4-alfa-Glucosidase/isolamento & purificação
Glucana 1,4-alfa-Glucosidase/metabolismo
Seres Humanos
Japão
Ribonuclease T1/isolamento & purificação
Ribonuclease T1/metabolismo
Endonucleases Específicas para DNA e RNA de Cadeia Simples/isolamento & purificação
Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo
Tripsinogênio/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Fungal Proteins); 9002-08-8 (Trypsinogen); EC 3.1.27.3 (Ribonuclease T1); EC 3.1.30.1 (Endonuclease S1, Aspergillus); EC 3.1.30.1 (Single-Strand Specific DNA and RNA Endonucleases); EC 3.2.1.3 (Glucan 1,4-alpha-Glucosidase); EC 3.4.23.- (Aspartic Acid Endopeptidases); EC 3.4.23.18 (aspergillopepsin I)
[Em] Mês de entrada:1701
[Cu] Atualização por classe:170131
[Lr] Data última revisão:
170131
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160507
[St] Status:MEDLINE
[do] DOI:10.1080/09168451.2016.1177445


  3 / 1139 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:26554903
[Au] Autor:Pandey S; Agarwala P; Jayaraj GG; Gargallo R; Maiti S
[Ad] Endereço:Chemical and Systems Biology Unit, CSIR-Institute of Genomics and Integrative Biology , Mathura Road, New Delhi 110020, India.
[Ti] Título:The RNA Stem-Loop to G-Quadruplex Equilibrium Controls Mature MicroRNA Production inside the Cell.
[So] Source:Biochemistry;54(48):7067-78, 2015 Dec 08.
[Is] ISSN:1520-4995
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The biological role of the existence of overlapping structures in RNA is possible yet remains very unexplored. G-Rich tracts of RNA form G-quadruplexes, while GC-rich sequences prefer stem-loop structures. The equilibrium between alternate structures within RNA may occur and influence its functionality. We tested the equilibrium between G-quadruplex and stem-loop structure in RNA and its effect on biological processes using pre-miRNA as a model system. Dicer enzyme recognizes canonical stem-loop structures in pre-miRNA to produce mature miRNAs. Deviation from stem-loop leads to deregulated mature miRNA levels, providing readout of the existence of an alternate structure per se G-quadruplex-mediated structural interference in miRNA maturation. In vitro analysis using beacon and Dicer cleavage assays indicated that mature miRNA levels depend on relative amounts of K(+) and Mg(2+) ions, suggesting an ion-dependent structural shift. Further in cellulo studies with and without TmPyP4 (RNA G-quadruplex destabilizer) demonstrated that miRNA biogenesis is modulated by G-quadruplex to stem-loop equilibrium in a subset of pre-miRNAs. Our combined analysis thus provides evidence of the formation of noncanonical G-quadruplexes in competition with canonical stem-loop structure inside the cell and its effect on miRNA maturation in a comprehensive manner.
[Mh] Termos MeSH primário: Quadruplex G
MicroRNAs/química
MicroRNAs/metabolismo
Ribonuclease III/metabolismo
[Mh] Termos MeSH secundário: Sequência de Bases
Regulação da Expressão Gênica
Seres Humanos
Células MCF-7
MicroRNAs/genética
Dados de Sequência Molecular
Conformação de Ácido Nucleico
Ribonuclease T1/metabolismo
Transcrição Genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (MIRN27 microRNA, human); 0 (MicroRNAs); 0 (mirnlet7 microRNA, human); EC 3.1.26.3 (Ribonuclease III); EC 3.1.27.3 (Ribonuclease T1)
[Em] Mês de entrada:1603
[Cu] Atualização por classe:151208
[Lr] Data última revisão:
151208
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:151112
[St] Status:MEDLINE
[do] DOI:10.1021/acs.biochem.5b00574


  4 / 1139 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:26370969
[Au] Autor:Dedduwa-Mudalige GN; Chow CS
[Ad] Endereço:Department of Chemistry, Wayne State University, Detroit, MI 48202, USA. dedduwa.mudalige@wayne.edu.
[Ti] Título:Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins.
[So] Source:Int J Mol Sci;16(9):21392-409, 2015 Sep 07.
[Is] ISSN:1422-0067
[Cp] País de publicação:Switzerland
[La] Idioma:eng
[Ab] Resumo:Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA) intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA) including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.
[Mh] Termos MeSH primário: Antineoplásicos/farmacologia
Bactérias/efeitos dos fármacos
Bactérias/genética
Cisplatino/farmacologia
Sequências Repetidas Invertidas
RNA Bacteriano/genética
RNA Ribossômico/genética
[Mh] Termos MeSH secundário: Bactérias/metabolismo
Escherichia coli/genética
RNA Bacteriano/química
RNA Bacteriano/metabolismo
RNA Ribossômico/química
RNA Ribossômico/metabolismo
Ribonuclease T1/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Antineoplastic Agents); 0 (RNA, Bacterial); 0 (RNA, Ribosomal); EC 3.1.27.3 (Ribonuclease T1); Q20Q21Q62J (Cisplatin)
[Em] Mês de entrada:1606
[Cu] Atualização por classe:170220
[Lr] Data última revisão:
170220
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:150916
[St] Status:MEDLINE
[do] DOI:10.3390/ijms160921392


  5 / 1139 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:25475209
[Au] Autor:Tomé-Amat J; Ruiz-de-la-Herrán J; Martínez-del-Pozo Á; Gavilanes JG; Lacadena J
[Ad] Endereço:Departamento de Bioquímica y Biología Molecular I, Universidad Complutense de Madrid, Spain; Department of Food Science, Cornell University, Ithaca, NY, USA.
[Ti] Título:α-sarcin and RNase T1 based immunoconjugates: the role of intracellular trafficking in cytotoxic efficiency.
[So] Source:FEBS J;282(4):673-84, 2015 Feb.
[Is] ISSN:1742-4658
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Toxins have been thoroughly studied for their use as therapeutic agents in search of an improvement in toxic efficiency together with a minimization of their undesired side effects. Different studies have shown how toxins can follow different intracellular pathways which are connected with their cytotoxic action inside the cells. The work herein presented describes the different pathways followed by the ribotoxin α-sarcin and the fungal RNase T1, as toxic domains of immunoconjugates with identical binding domain, the single chain variable fragment of a monoclonal antibody raised against the glycoprotein A33. According to the results obtained both immunoconjugates enter the cells via early endosomes and, while α-sarcin can translocate directly into the cytosol to exert its deathly action, RNase T1 follows a pathway that involves lysosomes and the Golgi apparatus. These facts contribute to explaining the different cytotoxicity observed against their targeted cells, and reveal how the innate properties of the toxic domain, apart from its catalytic features, can be a key factor to be considered for immunotoxin optimization.
[Mh] Termos MeSH primário: Endorribonucleases/metabolismo
Proteínas Fúngicas/metabolismo
Imunoconjugados/metabolismo
Ribonuclease T1/metabolismo
[Mh] Termos MeSH secundário: Linhagem Celular Tumoral
Sobrevivência Celular/genética
Sobrevivência Celular/fisiologia
Dicroísmo Circular
Neoplasias do Colo/metabolismo
Endorribonucleases/genética
Proteínas Fúngicas/genética
Seres Humanos
Imunoconjugados/genética
Imunotoxinas/genética
Imunotoxinas/metabolismo
Microscopia de Fluorescência
Transporte Proteico
Ribonuclease T1/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Fungal Proteins); 0 (Immunoconjugates); 0 (Immunotoxins); 1407-48-3 (alpha-sarcin); EC 3.1.- (Endoribonucleases); EC 3.1.27.3 (Ribonuclease T1)
[Em] Mês de entrada:1504
[Cu] Atualização por classe:150218
[Lr] Data última revisão:
150218
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:141206
[St] Status:MEDLINE
[do] DOI:10.1111/febs.13169


  6 / 1139 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:25238955
[Au] Autor:Ulyanova V; Vershinina V; Ilinskaya O; Harwood CR
[Ad] Endereço:Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russian Federation. Electronic address: ulyanova.vera@gmail.com.
[Ti] Título:Binase-like guanyl-preferring ribonucleases are new members of Bacillus PhoP regulon.
[So] Source:Microbiol Res;170:131-8, 2015 Jan.
[Is] ISSN:1618-0623
[Cp] País de publicação:Germany
[La] Idioma:eng
[Ab] Resumo:Extracellular low-molecular weight guanyl-preferring ribonucleases (LMW RNases) of Bacillus sp. comprise a group of hydrolytic enzymes that share highly similar structural and catalytic characteristics with barnase, a ribonuclease from Bacillus amyloliquefaciens, and binase, a ribonuclease from Bacillus intermedius. Although the physical-chemical and catalytic properties of Bacillus guanyl-preferring ribonucleases are very similar, there is considerably more variation in the environmental conditions that lead to the induction of the genes encoding these RNases. Based on structural differences of their genes the guanyl-preferring ribonucleases have been sub-divided into binase-like and barnase-like groups. Here we show the ability of the key regulator of phosphate deficiency response, PhoP, to direct the transcription of the binase-like RNases but not barnase-like RNases. These results, together with our demonstration that binase-like RNases are induced in response to phosphate starvation, allow us to categorise this group of ribonucleases as new members of Bacillus PhoP regulon. In contrast, the barnase-like ribonucleases are relatively insensitive to the phosphate concentration and the environmental conditions that are responsible for their induction, and the regulatory elements involved, are currently unknown.
[Mh] Termos MeSH primário: Bacillus/genética
Regulon/genética
Ribonuclease T1/genética
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Bacillus/metabolismo
Proteínas de Bactérias/química
Proteínas de Bactérias/metabolismo
Sequência de Bases
Sítios de Ligação
Regulação Bacteriana da Expressão Gênica
Dados de Sequência Molecular
Motivos de Nucleotídeos
Filogenia
Matrizes de Pontuação de Posição Específica
Regiões Promotoras Genéticas
Ligação Proteica
Proteínas Recombinantes de Fusão/química
Proteínas Recombinantes de Fusão/genética
Proteínas Recombinantes de Fusão/metabolismo
Ribonuclease T1/química
Ribonuclease T1/classificação
Ribonuclease T1/metabolismo
Alinhamento de Sequência
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Recombinant Fusion Proteins); 125360-99-8 (PhoP protein, Bacteria); EC 3.1.27.3 (Ribonuclease T1)
[Em] Mês de entrada:1512
[Cu] Atualização por classe:141208
[Lr] Data última revisão:
141208
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:140921
[St] Status:MEDLINE


  7 / 1139 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:25046564
[Au] Autor:Chao WC; Shen JY; Lu JF; Wang JS; Yang HC; Wee K; Lin LJ; Kuo YC; Yang CH; Weng SH; Huang HC; Chen YH; Chou PT
[Ad] Endereço:Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University , Taipei 10617, Taiwan.
[Ti] Título:Probing water environment of Trp59 in ribonuclease T1: insight of the structure-water network relationship.
[So] Source:J Phys Chem B;119(6):2157-67, 2015 Feb 12.
[Is] ISSN:1520-5207
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:In this study, we used the tryptophan analogue, (2,7-aza)Trp, which exhibits water catalyzed proton transfer isomerization among N(1)-H, N(7)-H, and N(2)-H isomers, to probe the water environment of tryptophan-59 (Trp59) near the connecting loop region of ribonuclease Tl (RNase T1) by replacing the tryptophan with (2,7-aza)Trp. The resulting (2,7-aza)Trp59 triple emission bands and their associated relaxation dynamics, together with relevant data of 7-azatryptophan and molecular dynamics (MD) simulation, lead us to propose two Trp59 containing conformers in RNase T1, namely, the loop-close and loop-open forms. Water is rich in the loop-open form around the proximity of (2,7-aza)Trp59, which catalyzes (2,7-aza)Trp59 proton transfer in the excited state, giving both N(1)-H and N(7)-H isomer emissions. The existence of N(2)-H isomer in the loop-open form, supported by the MD simulation, is mainly due to the specific hydrogen bonding between N(2)-H proton and water molecule that bridges N(2)-H and the amide oxygen of Pro60, forming a strong network. The loop-close form is relatively tight in space, which squeezes water molecules out of the interface of α-helix and ß2 strand, joined by the connecting loop region; accordingly, the water-scant environment leads to the sole existence of the N(1)-H isomer emission. MD simulation also points out that the Trp-water pairs appear to preferentially participate in a hydrogen bond network incorporating polar amino acid moieties on the protein surface and bulk waters, providing the structural dynamic features of the connecting loop region in RNase T1.
[Mh] Termos MeSH primário: Ribonuclease T1/química
Água/química
[Mh] Termos MeSH secundário: Substituição de Aminoácidos
Aspergillus oryzae/enzimologia
Ligações de Hidrogênio
Simulação de Dinâmica Molecular
Estrutura Secundária de Proteína
Ribonuclease T1/genética
Triptofano
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
059QF0KO0R (Water); 8DUH1N11BX (Tryptophan); EC 3.1.27.3 (Ribonuclease T1)
[Em] Mês de entrada:1602
[Cu] Atualização por classe:150212
[Lr] Data última revisão:
150212
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:140722
[St] Status:MEDLINE
[do] DOI:10.1021/jp503914s


  8 / 1139 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:25055899
[Au] Autor:Nourbakhsh M
[Ad] Endereço:Department of Pharmacy and Biotechnology, German University in Cairo, Berlin, Germany, mnourbakhsh@hotmail.com.
[Ti] Título:Analysis of RNA secondary structure.
[So] Source:Methods Mol Biol;1182:35-42, 2014.
[Is] ISSN:1940-6029
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:RNA has different levels of structural organization. The primary structure is the linear order of the nucleotide monomers, the RNA sequence. During transcription process, the partially synthesized RNA is folded by base-pairing and thermodynamic intramolecular or intermolecular interactions. This results in a dynamic spreading of a secondary structure along the length of the transcribed section of the RNA. The analysis of both primary or secondary structures requires the RNA end-labeling either at its 5' end using a kinase reaction with [gamma-32P]ATP, or at its 3' end using an RNA ligation reaction with [32P]pCp. End-labeled RNAs are then gradually breakdown using hydrolysing chemicals or a variety of enzymes targeting specific RNA sequences and secondary structure. The most commonly used enzymes are RNase A, T1, and V1. The partial digestion of the RNA reveals a mix of truncated RNA fragments of different lengths, called RNA ladder. The products are then separates through a high resolution gel system and subjected to autoradiographic analysis. Each visible fragment is labeled at one end, but comprises an enzyme specific sequence at the other end. Final comparison of the detected RNA ladders reveals a hypothetical model of the secondary RNA structure under assay conditions.
[Mh] Termos MeSH primário: RNA/análise
RNA/química
[Mh] Termos MeSH secundário: Conformação de Ácido Nucleico
RNA/metabolismo
Ribonuclease T1/metabolismo
Ribonucleases/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
63231-63-0 (RNA); EC 3.1.- (Ribonucleases); EC 3.1.27.3 (Ribonuclease T1)
[Em] Mês de entrada:1503
[Cu] Atualização por classe:140724
[Lr] Data última revisão:
140724
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:140725
[St] Status:MEDLINE
[do] DOI:10.1007/978-1-4939-1062-5_4


  9 / 1139 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:24882409
[Au] Autor:Kobayashi H; Katsutani T; Hara Y; Motoyoshi N; Itagaki T; Akita F; Higashiura A; Yamada Y; Inokuchi N; Suzuki M
[Ad] Endereço:School of Pharmacy, Nihon University.
[Ti] Título:X-ray crystallographic structure of RNase Po1 that exhibits anti-tumor activity.
[So] Source:Biol Pharm Bull;37(6):968-78, 2014.
[Is] ISSN:1347-5215
[Cp] País de publicação:Japan
[La] Idioma:eng
[Ab] Resumo:RNase Po1 is a guanylic acid-specific ribonuclease member of the RNase T1 family from Pleurotus ostreatus. We previously reported that RNase Po1 inhibits the proliferation of human tumor cells, yet RNase T1 and other T1 family RNases are non-toxic. We determined the three-dimensional X-ray structure of RNase Po1 and compared it with that of RNase T1. The catalytic sites are conserved. However, there are three disulfide bonds, one more than in RNase T1. One of the additional disulfide bond is in the catalytic and binding site of RNase Po1, and makes RNase Po1 more stable than RNase T1. A comparison of the electrostatic potential of the molecular surfaces of these two proteins shows that RNase T1 is anionic whereas RNase Po1 is cationic, so RNase Po1 might bind to the plasma membrane electrostatically. We suggest that the structural stability and cationic character of RNase Po1 are critical to the anti-cancer properties of the protein.
[Mh] Termos MeSH primário: Antineoplásicos/química
Antineoplásicos/farmacologia
Proliferação Celular/efeitos dos fármacos
Ribonuclease T1/química
Ribonuclease T1/farmacologia
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Antineoplásicos/isolamento & purificação
Cristalização
Cristalografia por Raios X
Eletroforese em Gel de Poliacrilamida
Células HL-60
Seres Humanos
Interações Hidrofóbicas e Hidrofílicas
Dados de Sequência Molecular
Pleurotus/enzimologia
Estrutura Secundária de Proteína
Estrutura Terciária de Proteína
Ribonuclease T1/isolamento & purificação
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Antineoplastic Agents); EC 3.1.27.- (ribonuclease Po1); EC 3.1.27.3 (Ribonuclease T1)
[Em] Mês de entrada:1501
[Cu] Atualização por classe:140602
[Lr] Data última revisão:
140602
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:140603
[St] Status:MEDLINE


  10 / 1139 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:24591301
[Au] Autor:Pace CN; Fu H; Lee Fryar K; Landua J; Trevino SR; Schell D; Thurlkill RL; Imura S; Scholtz JM; Gajiwala K; Sevcik J; Urbanikova L; Myers JK; Takano K; Hebert EJ; Shirley BA; Grimsley GR
[Ad] Endereço:Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, 77843; Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas, 77843.
[Ti] Título:Contribution of hydrogen bonds to protein stability.
[So] Source:Protein Sci;23(5):652-61, 2014 May.
[Is] ISSN:1469-896X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Our goal was to gain a better understanding of the contribution of the burial of polar groups and their hydrogen bonds to the conformational stability of proteins. We measured the change in stability, Δ(ΔG), for a series of hydrogen bonding mutants in four proteins: villin headpiece subdomain (VHP) containing 36 residues, a surface protein from Borrelia burgdorferi (VlsE) containing 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa (RNase Sa) and T1 (RNase T1). Crystal structures were determined for three of the hydrogen bonding mutants of RNase Sa: S24A, Y51F, and T95A. The structures are very similar to wild type RNase Sa and the hydrogen bonding partners form intermolecular hydrogen bonds to water in all three mutants. We compare our results with previous studies of similar mutants in other proteins and reach the following conclusions. (1) Hydrogen bonds contribute favorably to protein stability. (2) The contribution of hydrogen bonds to protein stability is strongly context dependent. (3) Hydrogen bonds by side chains and peptide groups make similar contributions to protein stability. (4) Polar group burial can make a favorable contribution to protein stability even if the polar groups are not hydrogen bonded. (5) The contribution of hydrogen bonds to protein stability is similar for VHP, a small protein, and VlsE, a large protein.
[Mh] Termos MeSH primário: Estabilidade Proteica
Proteínas/química
[Mh] Termos MeSH secundário: Proteínas de Bactérias/química
Borrelia burgdorferi/química
Entropia
Ligações de Hidrogênio
Proteínas dos Microfilamentos/química
Modelos Moleculares
Conformação Proteica
Ribonuclease T1/química
Ribonucleases/química
Streptomyces aureofaciens/química
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Microfilament Proteins); 0 (Proteins); 0 (villin); EC 3.1.- (Ribonucleases); EC 3.1.- (ribonuclease Sa3); EC 3.1.27.3 (Ribonuclease T1)
[Em] Mês de entrada:1412
[Cu] Atualização por classe:170220
[Lr] Data última revisão:
170220
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:140305
[St] Status:MEDLINE
[do] DOI:10.1002/pro.2449



página 1 de 114 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde