Base de dados : MEDLINE
Pesquisa : D08.811.277.352.650.620 [Categoria DeCS]
Referências encontradas : 840 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 84 ir para página                         

  1 / 840 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28467182
[Au] Autor:Li Y; Zhou J
[Ad] Endereço:Department of Infectious Disease, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China.
[Ti] Título:Roles of silent information regulator 1-serine/arginine-rich splicing factor 10-lipin 1 axis in the pathogenesis of alcohol fatty liver disease.
[So] Source:Exp Biol Med (Maywood);242(11):1117-1125, 2017 06.
[Is] ISSN:1535-3699
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Alcohol exposure is a major reason of morbidity and mortality all over the world, with much of detrimental consequences attributing to alcoholic liver disease (ALD). With the continued ethanol consumption, alcoholic fatty liver disease (AFLD, the earliest and reversible form of ALD) can further develop to more serious forms of alcoholic liver damage, including alcoholic steatohepatitis, fibrosis/cirrhosis, and even eventually progress to hepatocellular carcinoma and liver failure. Furthermore, cell trauma, inflammation, oxidative stress, regeneration, and bacterial translocation are crucial promoters of ethanol-mediated liver lesions. AFLD is characterized by excessive fat deposition in liver induced by excessive drinking, which is related closely to the raised synthesis of fatty acids and triglyceride, reduction of mitochondrial fatty acid ß-oxidation, and the aggregation of very-low-density lipoprotein (VLDL). Although little is known about the cellular and molecular mechanisms of AFLD, it seems to be correlated to diverse signal channels. Massive studies have suggested that liver steatosis is closely associated with the inhibition of silent information regulator 1 (SIRT1) and the augment of lipin1 ß/α ratio mediated by ethanol. Recently, serine/arginine-rich splicing factor 10 (SFRS10), a specific molecule functioning in alternative splicing of lipin 1 (LPIN1) pre-mRNAs, has emerged as the central connection between SIRT1 and lipin1 signaling. It seems a new signaling axis, SIRT1-SFRS10-LPIN1 axis, acting in the pathogenesis of AFLD exists. This article aims to further explore the interactions among the above three molecules and their influences on the development of AFLD. Impact statement ALD is a major health burden in industrialized countries as well as China. AFLD, the earliest and reversible form of ALD, can progress to hepatitis, fibrosis/cirrhosis, even hepatoma. While the mechanisms, by which ethanol consumption leads to AFLD, are complicated and multiple, and remain incompletely understood. SIRT1, SFRS10, and LIPIN1 had been separately reported to participate in lipid metabolism and the pathogenesis of AFLD. Noteworthy, we found the connection among them via searching articles in PubMed and we had elaborated the connection in detail in this minireview. It seems a new signaling axis, SIRT1-SFRS10-LIPIN1 axis, acting in the pathogenesis of AFLD exists. Further study aimed at SIRT1-SFRS10-LIPIN1 signaling system will possibly offer a more effective therapeutic target for AFLD.
[Mh] Termos MeSH primário: Proteínas de Ciclo Celular/metabolismo
Fígado Gorduroso Alcoólico/fisiopatologia
Fígado/patologia
Fosfatidato Fosfatase/metabolismo
Proteínas Repressoras/metabolismo
Fatores de Processamento de Serina-Arginina/metabolismo
Transdução de Sinais
Sirtuína 1/metabolismo
[Mh] Termos MeSH secundário: Animais
Regulação da Expressão Gênica
Seres Humanos
Metabolismo dos Lipídeos
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Cell Cycle Proteins); 0 (Repressor Proteins); 0 (SRSF10 protein, human); 170974-22-8 (Serine-Arginine Splicing Factors); EC 3.1.3.4 (LPIN1 protein, human); EC 3.1.3.4 (Phosphatidate Phosphatase); EC 3.5.1.- (SIRT1 protein, human); EC 3.5.1.- (Sirtuin 1)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:171205
[Lr] Data última revisão:
171205
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170504
[St] Status:MEDLINE
[do] DOI:10.1177/1535370217707729


  2 / 840 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28756231
[Au] Autor:Sherr GL; LaMassa N; Li E; Phillips G; Shen CH
[Ad] Endereço:Department of Biology, College of Staten Island, City University of New York, 2800 Victory Blvd, Staten Island, NY 10314, United States; PhD Program in Biology, The Graduate Center, City University of New York, 365 Fifth Avenue, New York 10016, United States.
[Ti] Título:Pah1p negatively regulates the expression of V-ATPase genes as well as vacuolar acidification.
[So] Source:Biochem Biophys Res Commun;491(3):693-700, 2017 Sep 23.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:In yeast, PAH1 plays an important role in cell homeostasis and lipid biosynthesis. PAH1 encodes for the PA phosphatase, Pah1p, which is responsible for de novo TAG and phospholipid synthesis. It has been suggested that the lack of Pah1p causes irregular vacuolar morphology and dysfunctional V-ATPase pump activity. However, the molecular connection between Pah1p and V-ATPase activity has remained unclear. Through real-time PCR, we have shown that PAH1 is maximally induced at the stationary stage in the presence of inositol. We also found that vacuoles were less fragmented when PAH1 is maximally expressed. Subsequently, we observed that vacuoles from pah1Δ cells were more acidic than those in WT cells. Furthermore, V-ATPase genes were upregulated in the absence of Pah1p. These results suggest that Pah1p plays an important role in vacuolar activity by negatively regulating the expression of V-ATPase genes. As such, we provide evidence to show the role of Pah1p in vacuolar acidification and fragmentation.
[Mh] Termos MeSH primário: Inositol/metabolismo
Fosfatidato Fosfatase/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
ATPases Vacuolares Próton-Translocadoras/química
ATPases Vacuolares Próton-Translocadoras/metabolismo
Vacúolos/química
Vacúolos/metabolismo
[Mh] Termos MeSH secundário: Regulação para Baixo/fisiologia
Regulação Enzimológica da Expressão Gênica/fisiologia
Concentração de Íons de Hidrogênio
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Saccharomyces cerevisiae Proteins); 4L6452S749 (Inositol); EC 3.1.3.4 (PAH1 protein, S cerevisiae); EC 3.1.3.4 (Phosphatidate Phosphatase); EC 3.6.1.- (Vacuolar Proton-Translocating ATPases)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170911
[Lr] Data última revisão:
170911
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170731
[St] Status:MEDLINE


  3 / 840 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28755519
[Au] Autor:Sarusi Portuguez A; Schwartz M; Siersbaek R; Nielsen R; Sung MH; Mandrup S; Kaplan T; Hakim O
[Ad] Endereço:The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.
[Ti] Título:Hierarchical role for transcription factors and chromatin structure in genome organization along adipogenesis.
[So] Source:FEBS J;284(19):3230-3244, 2017 Oct.
[Is] ISSN:1742-4658
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The three dimensional folding of mammalian genomes is cell type specific and difficult to alter suggesting that it is an important component of gene regulation. However, given the multitude of chromatin-associating factors, the mechanisms driving the colocalization of active chromosomal domains and the role of this organization in regulating the transcription program in adipocytes are not clear. Analysis of genome-wide chromosomal associations revealed cell type-specific spatial clustering of adipogenic genes in 3T3-L1 cells. Time course analysis demonstrated that the adipogenic 'hub', sampled by PPARγ and Lpin1, undergoes orchestrated reorganization during adipogenesis. Coupling the dynamics of genome architecture with multiple chromatin datasets indicated that among all the transcription factors (TFs) tested, RXR is central to genome reorganization at the beginning of adipogenesis. Interestingly, at the end of differentiation, the adipogenic hub was shifted to an H3K27me3-repressive environment in conjunction with attenuation of gene transcription. We propose a stage-specific hierarchy for the activity of TFs contributing to the establishment of an adipogenic genome architecture that brings together the adipogenic genetic program. In addition, the repositioning of this network in a H3K27me3-rich environment at the end of differentiation may contribute to the stabilization of gene transcription levels and reduce the developmental plasticity of these specialized cells. DATABASE: All sequence data reported in this paper have been deposited at GEO (http://www.ncbi.nlm.nih.gov/geo/) (GSE92475).
[Mh] Termos MeSH primário: Adipócitos/metabolismo
Adipogenia/genética
Cromatina/química
Proteínas Nucleares/genética
PPAR gama/genética
Fosfatidato Fosfatase/genética
Receptores X Retinoide/genética
[Mh] Termos MeSH secundário: Células 3T3-L1
Adipócitos/citologia
Animais
Linfócitos B/citologia
Linfócitos B/metabolismo
Proteína beta Intensificadora de Ligação a CCAAT/genética
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo
Proteínas Estimuladoras de Ligação a CCAAT/genética
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo
Diferenciação Celular
Cromatina/metabolismo
Perfilação da Expressão Gênica
Regulação da Expressão Gênica
Histonas/genética
Histonas/metabolismo
Interferon gama/genética
Interferon gama/metabolismo
Camundongos
Proteínas Nucleares/metabolismo
Especificidade de Órgãos
PPAR gama/metabolismo
Fosfatidato Fosfatase/metabolismo
Cultura Primária de Células
Receptores X Retinoide/metabolismo
Transdução de Sinais
Transcrição Genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (CCAAT-Enhancer-Binding Protein-beta); 0 (CCAAT-Enhancer-Binding Proteins); 0 (CEBPA protein, mouse); 0 (Cebpb protein, mouse); 0 (Chromatin); 0 (Histones); 0 (IFNG protein, mouse); 0 (Nuclear Proteins); 0 (PPAR gamma); 0 (Retinoid X Receptors); 82115-62-6 (Interferon-gamma); EC 3.1.3.4 (Lpin1 protein, mouse); EC 3.1.3.4 (Phosphatidate Phosphatase)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171020
[Lr] Data última revisão:
171020
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170730
[St] Status:MEDLINE
[do] DOI:10.1111/febs.14183


  4 / 840 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28696211
[Au] Autor:Chen Q; Rong P; Xu D; Zhu S; Chen L; Xie B; Du Q; Quan C; Sheng Y; Zhao TJ; Li P; Wang HY; Chen S
[Ad] Endereço:MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Pukou District, Nanjing, China.
[Ti] Título:Rab8a Deficiency in Skeletal Muscle Causes Hyperlipidemia and Hepatosteatosis by Impairing Muscle Lipid Uptake and Storage.
[So] Source:Diabetes;66(9):2387-2399, 2017 Sep.
[Is] ISSN:1939-327X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Skeletal muscle absorbs long-chain fatty acids (LCFAs) that are either oxidized in mitochondria or temporarily stored as triglycerides in lipid droplets (LDs). So far, it is still not fully understood how lipid uptake and storage are regulated in muscle and whether these are important for whole-body lipid homeostasis. Here we show that the small GTPase Rab8a regulates lipid uptake and storage in skeletal muscle. Muscle-specific Rab8a deletion caused hyperlipidemia and exacerbated hepatosteatosis induced by a high-fat diet. Mechanistically, Rab8a deficiency decreased LCFA entry into skeletal muscle and inhibited LD fusion in muscle cells. Consequently, blood lipid levels were elevated and stimulated hepatic mammalian target of rapamycin, which enhanced hepatosteatosis by upregulating hepatic lipogenesis and cholesterol biosynthesis. Our results demonstrate the significance of lipid uptake and storage in muscle in regulating whole-body lipid homeostasis, and they shed light on the roles of skeletal muscle in the pathogenesis of hyperlipidemia and hepatosteatosis.
[Mh] Termos MeSH primário: Fígado Gorduroso/metabolismo
Hiperlipidemias/metabolismo
Metabolismo dos Lipídeos/fisiologia
Músculo Esquelético/metabolismo
Proteínas rab de Ligação ao GTP/metabolismo
[Mh] Termos MeSH secundário: Animais
Colesterol/biossíntese
Regulação da Expressão Gênica/fisiologia
Hiperlipidemias/sangue
Metabolismo dos Lipídeos/genética
Camundongos
Camundongos Knockout
Fator Regulador Miogênico 5/genética
Fator Regulador Miogênico 5/metabolismo
Proteínas Nucleares/genética
Proteínas Nucleares/metabolismo
Fosfatidato Fosfatase/genética
Fosfatidato Fosfatase/metabolismo
Transdução de Sinais
Serina-Treonina Quinases TOR/genética
Serina-Treonina Quinases TOR/metabolismo
Proteínas rab de Ligação ao GTP/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Myf5 protein, mouse); 0 (Myogenic Regulatory Factor 5); 0 (Nuclear Proteins); 0 (Rab8a protein, mouse); 97C5T2UQ7J (Cholesterol); EC 2.7.1.1 (TOR Serine-Threonine Kinases); EC 2.7.1.1 (mTOR protein, mouse); EC 3.1.3.4 (Lpin1 protein, mouse); EC 3.1.3.4 (Phosphatidate Phosphatase); EC 3.6.5.2 (rab GTP-Binding Proteins)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171017
[Lr] Data última revisão:
171017
[Sb] Subgrupo de revista:AIM; IM
[Da] Data de entrada para processamento:170712
[St] Status:MEDLINE
[do] DOI:10.2337/db17-0077


  5 / 840 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28687666
[Au] Autor:LeBlanc MG; Lehmann R
[Ad] Endereço:Howard Hughes Medical Institute, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY.
[Ti] Título:Domain-specific control of germ cell polarity and migration by multifunction Tre1 GPCR.
[So] Source:J Cell Biol;216(9):2945-2958, 2017 Sep 04.
[Is] ISSN:1540-8140
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The migration of primordial germ cells (PGCs) from their place of origin to the embryonic gonad is an essential reproductive feature in many animal species. In , a single G protein-coupled receptor, Trapped in endoderm 1 (Tre1), mediates germ cell polarization at the onset of active migration and directs subsequent migration of PGCs through the midgut primordium. How these different aspects of cell behavior are coordinated through a single receptor is not known. We demonstrate that two highly conserved domains, the E/N/DRY and NPxxY motifs, have overlapping and unique functions in Tre1. The Tre1-NRY domain via G protein signaling is required for reading and responding to guidance and survival cues controlled by the lipid phosphate phosphatases Wunen and Wunen2. In contrast, the Tre1-NPIIY domain has a separate role in Rho1- and E-cadherin-mediated polarization at the initiation stage independent of G protein signaling. We propose that this bifurcation of the Tre1 G protein-coupled receptor signaling response via G protein-dependent and independent branches enables distinct spatiotemporal regulation of germ cell migration.
[Mh] Termos MeSH primário: Polaridade Celular
Proteínas de Drosophila/metabolismo
Drosophila melanogaster/metabolismo
Células Germinativas Embrionárias/metabolismo
Receptores Acoplados a Proteínas-G/metabolismo
[Mh] Termos MeSH secundário: Animais
Animais Geneticamente Modificados
Caderinas/genética
Caderinas/metabolismo
Movimento Celular
Proteínas de Drosophila/genética
Drosophila melanogaster/embriologia
Drosophila melanogaster/genética
Genótipo
Ligantes
Proteínas de Membrana/genética
Proteínas de Membrana/metabolismo
Microscopia de Fluorescência
Microscopia de Vídeo
Mutação
Fenótipo
Fosfatidato Fosfatase/genética
Fosfatidato Fosfatase/metabolismo
Domínios Proteicos
Receptores Acoplados a Proteínas-G/genética
Transdução de Sinais
Proteínas rho de Ligação ao GTP/genética
Proteínas rho de Ligação ao GTP/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; VIDEO-AUDIO MEDIA
[Nm] Nome de substância:
0 (Cadherins); 0 (Drosophila Proteins); 0 (Ligands); 0 (Membrane Proteins); 0 (Receptors, G-Protein-Coupled); 0 (Tre1 protein, Drosophila); 0 (shotgun protein, Drosophila); EC 3.1.3.4 (Phosphatidate Phosphatase); EC 3.1.3.4 (Wun2 protein, Drosophila); EC 3.1.3.4 (wunen protein, Drosophila); EC 3.6.5.2 (Rho1 protein, Drosophila); EC 3.6.5.2 (rho GTP-Binding Proteins)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171004
[Lr] Data última revisão:
171004
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170709
[St] Status:MEDLINE
[do] DOI:10.1083/jcb.201612053


  6 / 840 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28673963
[Au] Autor:Han GS; Carman GM
[Ad] Endereço:From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901.
[Ti] Título:Yeast -encoded phosphatidate phosphatase controls the expression of -encoded phosphatidylserine synthase for membrane phospholipid synthesis.
[So] Source:J Biol Chem;292(32):13230-13242, 2017 Aug 11.
[Is] ISSN:1083-351X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The -encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in , exerts a negative regulatory effect on the level of phosphatidate used for the synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of -encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by Truncation analysis and site-directed mutagenesis of the promoter indicated that Cho1 expression in the Δ mutant is induced through the inositol-sensitive upstream activation sequence (UAS ), a -acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a UAS mutation suppressed Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the -encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis.
[Mh] Termos MeSH primário: Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo
Regulação Fúngica da Expressão Gênica
Modelos Biológicos
Fosfatidato Fosfatase/metabolismo
Proteínas Repressoras/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
Fatores de Transcrição/metabolismo
[Mh] Termos MeSH secundário: Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/química
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética
Deleção de Genes
Proteínas de Fluorescência Verde/genética
Proteínas de Fluorescência Verde/metabolismo
Mutagênese Sítio-Dirigida
Mutação
Fragmentos de Peptídeos/química
Fragmentos de Peptídeos/genética
Fragmentos de Peptídeos/metabolismo
Fosfatidato Fosfatase/química
Fosfatidato Fosfatase/genética
Fosfolipídeos/metabolismo
Regiões Promotoras Genéticas
Transporte Proteico
Proteínas Recombinantes de Fusão/química
Proteínas Recombinantes de Fusão/metabolismo
Proteínas Recombinantes/química
Proteínas Recombinantes/metabolismo
Proteínas Repressoras/genética
Elementos de Resposta
Saccharomyces cerevisiae/citologia
Saccharomyces cerevisiae/enzimologia
Saccharomyces cerevisiae/crescimento & desenvolvimento
Saccharomyces cerevisiae/fisiologia
Proteínas de Saccharomyces cerevisiae/química
Proteínas de Saccharomyces cerevisiae/genética
Fatores de Transcrição/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Basic Helix-Loop-Helix Transcription Factors); 0 (CHO1 protein, S cerevisiae); 0 (DGK1 protein, S cerevisiae); 0 (INO2 protein, S cerevisiae); 0 (INO4 protein, S cerevisiae); 0 (OPI1 protein, S cerevisiae); 0 (Peptide Fragments); 0 (Phospholipids); 0 (Recombinant Fusion Proteins); 0 (Recombinant Proteins); 0 (Repressor Proteins); 0 (Saccharomyces cerevisiae Proteins); 0 (Transcription Factors); 147336-22-9 (Green Fluorescent Proteins); EC 2.7.8.8 (CDPdiacylglycerol-Serine O-Phosphatidyltransferase); EC 3.1.3.4 (PAH1 protein, S cerevisiae); EC 3.1.3.4 (Phosphatidate Phosphatase)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170825
[Lr] Data última revisão:
170825
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170705
[St] Status:MEDLINE
[do] DOI:10.1074/jbc.M117.801720


  7 / 840 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28483528
[Au] Autor:Ishimoto K; Hayase A; Kumagai F; Kawai M; Okuno H; Hino N; Okada Y; Kawamura T; Tanaka T; Hamakubo T; Sakai J; Kodama T; Tachibana K; Doi T
[Ad] Endereço:Laboratory of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan. Electronic address: kenji@phs.osaka-u.ac.jp.
[Ti] Título:Degradation of human Lipin-1 by BTRC E3 ubiquitin ligase.
[So] Source:Biochem Biophys Res Commun;488(1):159-164, 2017 Jun 17.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Lipin-1 has dual functions in the regulation of lipid and energy metabolism according to its subcellular localization, which is tightly controlled. However, it is unclear how Lipin-1 degradation is regulated. Here, we demonstrate that Lipin-1 is degraded through its DSGXXS motif. We show that Lipin-1 interacts with either of two E3 ubiquitin ligases, BTRC or FBXW11, and that this interaction is DSGXXS-dependent and mediates the attachment of polyubiquitin chains. Further, we demonstrate that degradation of Lipin-1 is regulated by BTRC in the cytoplasm and on membranes. These novel insights into the regulation of human Lipin-1 stability will be useful in planning further studies to elucidate its metabolic processes.
[Mh] Termos MeSH primário: Fosfatidato Fosfatase/metabolismo
Proteólise
Ubiquitina-Proteína Ligases/metabolismo
Proteínas Contendo Repetições de beta-Transducina/metabolismo
[Mh] Termos MeSH secundário: Células Hep G2
Seres Humanos
Ubiquitinação
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (BTRC protein, human); 0 (beta-Transducin Repeat-Containing Proteins); EC 2.3.2.27 (Ubiquitin-Protein Ligases); EC 3.1.3.4 (LPIN1 protein, human); EC 3.1.3.4 (Phosphatidate Phosphatase)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170921
[Lr] Data última revisão:
170921
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170510
[St] Status:MEDLINE


  8 / 840 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28411173
[Au] Autor:Zhang P; Reue K
[Ad] Endereço:Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, United States.
[Ti] Título:Lipin proteins and glycerolipid metabolism: Roles at the ER membrane and beyond.
[So] Source:Biochim Biophys Acta;1859(9 Pt B):1583-1595, 2017 09.
[Is] ISSN:0006-3002
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:The regulation of glycerolipid biosynthesis is critical for homeostasis of cellular lipid stores and membranes. Here we review the role of lipin phosphatidic acid phosphatase enzymes in glycerolipid synthesis. Lipin proteins are unique among glycerolipid biosynthetic enzymes in their ability to transit among cellular membranes, rather than remain membrane tethered. We focus on the mechanisms that underlie lipin protein interactions with membranes and the versatile roles of lipins in several organelles, including the endoplasmic reticulum, mitochondria, endolysosomes, lipid droplets, and nucleus. We also review the corresponding physiological roles of lipins, which have been uncovered by the study of genetic lipin deficiencies. We propose that the growing body of knowledge concerning the biochemical and cellular activities of lipin proteins will be valuable for understanding the physiological functions of lipin proteins in health and disease. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
[Mh] Termos MeSH primário: Retículo Endoplasmático/metabolismo
Metabolismo dos Lipídeos
Fosfatidato Fosfatase/fisiologia
[Mh] Termos MeSH secundário: Animais
Seres Humanos
Proteínas de Membrana/análise
Proteínas de Membrana/fisiologia
Mutação
Fosfatidato Fosfatase/análise
Fosfatidato Fosfatase/genética
Fosfolipídeos/biossíntese
Fosforilação
Triglicerídeos/biossíntese
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; REVIEW
[Nm] Nome de substância:
0 (Membrane Proteins); 0 (Phospholipids); 0 (Triglycerides); EC 3.1.3.4 (LPIN1 protein, human); EC 3.1.3.4 (Phosphatidate Phosphatase)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171117
[Lr] Data última revisão:
171117
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170416
[St] Status:MEDLINE


  9 / 840 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28347999
[Au] Autor:He J; Zhang F; Tay LWR; Boroda S; Nian W; Levental KR; Levental I; Harris TE; Chang JT; Du G
[Ad] Endereço:Department of Integrative Biology and Pharmacology University of Texas Health Science Center at Houston, Houston, Texas, USA.
[Ti] Título:Lipin-1 regulation of phospholipid synthesis maintains endoplasmic reticulum homeostasis and is critical for triple-negative breast cancer cell survival.
[So] Source:FASEB J;31(7):2893-2904, 2017 Jul.
[Is] ISSN:1530-6860
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Cancer cells reprogram their metabolism to increase the synthesis of macromolecules for rapid proliferation. Compared to fatty acids, much less is known about the synthesis of phospholipids, which is essential for membrane biogenesis in cancer cells. We found that , which encodes lipin-1, a phosphatidic acid phosphatase (PAP) controlling the rate-limiting step in the phospholipid synthesis pathway, is highly up-regulated in basal-like triple-negative breast cancer (TNBC). Moreover, high expression correlates with the poor prognosis of these patients. Knockdown of increases apoptosis in basal-like TNBC cell lines, whereas it has minimal or less effect on normal human mammary gland epithelial cells (HMECs) and estrogen receptor-positive breast cancer cell lines. Fatty acid incorporation and lipidomics analyses showed that knockdown blocks phospholipid synthesis and changes membrane lipid compositions that ultimately induce the activation of 1 of the 3 branches of unfolded protein responses, the inositol-requiring enzyme-1α pathway. We also show for the first time, to our knowledge, that lipin-1 knockdown significantly inhibits tumor growth using an orthotopic xenograft breast mouse model. Our results suggest that lipin-1 is a potential target for cancer therapy.-He, J., Zhang, F., Tay, L. W. R., Boroda, S., Nian, W., Levental, K. R., Levental, I., Harris, T. E., Chang, J. T., Du, G. Lipin-1 regulation of phospholipid synthesis maintains endoplasmic reticulum homeostasis and is critical for triple-negative breast cancer cell survival.
[Mh] Termos MeSH primário: Neoplasias da Mama/metabolismo
Retículo Endoplasmático/metabolismo
Regulação Neoplásica da Expressão Gênica/fisiologia
Homeostase/fisiologia
Fosfatidato Fosfatase/metabolismo
Fosfolipídeos/biossíntese
[Mh] Termos MeSH secundário: Animais
Linhagem Celular Tumoral
Sobrevivência Celular/fisiologia
Endorribonucleases/genética
Endorribonucleases/metabolismo
Feminino
Técnicas de Silenciamento de Genes
Seres Humanos
Camundongos
Neoplasias Experimentais/patologia
Fosfatidato Fosfatase/genética
Proteínas Serina-Treonina Quinases/genética
Proteínas Serina-Treonina Quinases/metabolismo
Transdução de Sinais
Serina-Treonina Quinases TOR/genética
Serina-Treonina Quinases TOR/metabolismo
Transcriptoma
Proteína 1 de Ligação a X-Box/genética
Proteína 1 de Ligação a X-Box/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Phospholipids); 0 (X-Box Binding Protein 1); 0 (XBP1 protein, human); EC 2.7.1.1 (MTOR protein, human); EC 2.7.1.1 (TOR Serine-Threonine Kinases); EC 2.7.11.1 (ERN1 protein, human); EC 2.7.11.1 (Protein-Serine-Threonine Kinases); EC 3.1.- (Endoribonucleases); EC 3.1.3.4 (LPIN1 protein, human); EC 3.1.3.4 (Phosphatidate Phosphatase)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170918
[Lr] Data última revisão:
170918
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170329
[St] Status:MEDLINE
[do] DOI:10.1096/fj.201601353R


  10 / 840 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28287811
[Au] Autor:Naderi M; Pazouki A; Arefian E; Hashemi SM; Jamshidi-Adegani F; Gholamalamdari O; Soudi S; Azadmanesh K; Mirab Samiee S; Merat S; Gholami Fesharaki M; Mondanizadeh M; Vasei M; Soleimani M
[Ad] Endereço:Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
[Ti] Título:Two Triacylglycerol Pathway Genes, CTDNEP1 and LPIN1, are Down-Regulated by hsa-miR-122-5p in Hepatocytes.
[So] Source:Arch Iran Med;20(3):165-171, 2017 Mar.
[Is] ISSN:1735-3947
[Cp] País de publicação:Iran
[La] Idioma:eng
[Ab] Resumo:BACKGROUND: Expression of miR-122 is highly specific to hepatocytes of the liver.  This miRNA is involved in lipid hemostasis of the tissue; however, there is no comprehensive understanding of its function in lipid hemostasis. MATERIALS AND METHODS: Since hepatocytes are responsible for part of Triacylglycerol (TAG) synthesis in the body, we hypothesized that miR-122, as the most abundant miRNA in the tissue, might regulate TAG metabolism by targeting key enzymes that are involved in its production pathway. A systematic computational analysis of putative targets of miR-122 identified CTDNEP1 and LPIN1 genes in the TAG pathway. We used dual-luciferase reporter assay, quantitative RT-PCR as well as western blot to confirm the repressive effect of miR-122 on CTDNEP1 and LPIN1 in TAG pathway. RESULTS: Real time PCR on liver needle biopsies with hepatosteatosis showed that miR-122 is up-regulated in hepatosteatosis. Surprisingly, the protein and RNA level of identified targets of miR-122 are also up-regulated in clinical samples, probably as a disproportionate feedback response to the high level of miR-122. CONCLUSION: Our findings suggest that up-regulation of miR-122 can trigger the compensatory response of LPIN1 and CTDNEP1 in hepatosteatosis.
[Mh] Termos MeSH primário: Hepatócitos/metabolismo
MicroRNAs/genética
Hepatopatia Gordurosa não Alcoólica/genética
Fosfatidato Fosfatase/genética
Fosfoproteínas Fosfatases/genética
RNA Mensageiro/metabolismo
[Mh] Termos MeSH secundário: Adulto
Western Blotting
Estudos de Casos e Controles
Regulação para Baixo
Feminino
Células Hep G2
Seres Humanos
Imuno-Histoquímica
Técnicas In Vitro
Metabolismo dos Lipídeos/genética
MicroRNAs/metabolismo
Meia-Idade
Hepatopatia Gordurosa não Alcoólica/metabolismo
Fosfatidato Fosfatase/metabolismo
Fosfoproteínas Fosfatases/metabolismo
Reação em Cadeia da Polimerase Via Transcriptase Reversa
Triglicerídeos/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (MIRN122 microRNA, human); 0 (MicroRNAs); 0 (RNA, Messenger); 0 (Triglycerides); EC 3.1.3.16 (CTDNEP1 protein, human); EC 3.1.3.16 (Phosphoprotein Phosphatases); EC 3.1.3.4 (LPIN1 protein, human); EC 3.1.3.4 (Phosphatidate Phosphatase)
[Em] Mês de entrada:1703
[Cu] Atualização por classe:170322
[Lr] Data última revisão:
170322
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170314
[St] Status:MEDLINE
[do] DOI:0172003/AIM.009



página 1 de 84 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde