Base de dados : MEDLINE
Pesquisa : D08.811.520.224.125 [Categoria DeCS]
Referências encontradas : 8394 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 840 ir para página                         

  1 / 8394 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29199988
[Au] Autor:Mydy LS; Mashhadi Z; Knight TW; Fenske T; Hagemann T; Hoppe RW; Han L; Miller TR; Schwabacher AW; Silvaggi NR
[Ad] Endereço:Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
[Ti] Título:Swit_4259, an acetoacetate decarboxylase-like enzyme from Sphingomonas wittichii RW1.
[So] Source:Acta Crystallogr F Struct Biol Commun;73(Pt 12):672-681, 2017 Dec 01.
[Is] ISSN:2053-230X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The Gram-negative bacterium Sphingomonas wittichii RW1 is notable for its ability to metabolize a variety of aromatic hydrocarbons. Not surprisingly, the S. wittichii genome contains a number of putative aromatic hydrocarbon-degrading gene clusters. One of these includes an enzyme of unknown function, Swit_4259, which belongs to the acetoacetate decarboxylase-like superfamily (ADCSF). Here, it is reported that Swit_4259 is a small (28.8 kDa) tetrameric ADCSF enzyme that, unlike the prototypical members of the superfamily, does not have acetoacetate decarboxylase activity. Structural characterization shows that the tertiary structure of Swit_4259 is nearly identical to that of the true decarboxylases, but there are important differences in the fine structure of the Swit_4259 active site that lead to a divergence in function. In addition, it is shown that while it is a poor substrate, Swit_4259 can catalyze the hydration of 2-oxo-hex-3-enedioate to yield 2-oxo-4-hydroxyhexanedioate. It is also demonstrated that Swit_4259 has pyruvate aldolase-dehydratase activity, a feature that is common to all of the family V ADCSF enzymes studied to date. The enzymatic activity, together with the genomic context, suggests that Swit_4259 may be a hydratase with a role in the metabolism of an as-yet-unknown hydrocarbon. These data have implications for engineering bioremediation pathways to degrade specific pollutants, as well as structure-function relationships within the ADCSF in general.
[Mh] Termos MeSH primário: Proteínas de Bactérias/química
Proteínas de Bactérias/metabolismo
Carboxiliases/química
Sphingomonas/enzimologia
[Mh] Termos MeSH secundário: Acetoacetatos/química
Acetoacetatos/metabolismo
Proteínas de Bactérias/genética
Carboxiliases/genética
Carboxiliases/metabolismo
Domínio Catalítico
Cristalografia por Raios X
Ácidos Cetoglutáricos/metabolismo
Espectroscopia de Ressonância Magnética
Modelos Moleculares
Conformação Proteica
Ácido Pirúvico/química
Ácido Pirúvico/metabolismo
Espectrometria de Massas por Ionização por Electrospray
Especificidade por Substrato
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Acetoacetates); 0 (Bacterial Proteins); 0 (Ketoglutaric Acids); 4ZI204Y1MC (acetoacetic acid); 8558G7RUTR (Pyruvic Acid); 8ID597Z82X (alpha-ketoglutaric acid); EC 4.1.1.- (Carboxy-Lyases); EC 4.1.1.4 (acetoacetate decarboxylase)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180222
[Lr] Data última revisão:
180222
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171205
[St] Status:MEDLINE
[do] DOI:10.1107/S2053230X17015862


  2 / 8394 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28467946
[Au] Autor:Torrano V; Carracedo A
[Ad] Endereço:CIC bioGUNE, 801A Bizkaia Technology Park, 48160 Derio, Spain; CIBERONC.
[Ti] Título:Quiescence-like Metabolism to Push Cancer Out of the Race.
[So] Source:Cell Metab;25(5):997-999, 2017 May 02.
[Is] ISSN:1932-7420
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Biological features acquired or lost during the tumorigenic process are a source for the discovery of molecular cues relevant to cancer. The latest study led by the Weinberg lab (Keckesova et al., 2017) focuses on the transcriptional program underlying quiescence to uncover a novel metabolic tumor suppressor, LACTB.
[Mh] Termos MeSH primário: Proteínas de Membrana/metabolismo
Proteínas Mitocondriais/metabolismo
Neoplasias/metabolismo
beta-Lactamases/metabolismo
[Mh] Termos MeSH secundário: Animais
Carboxiliases/metabolismo
Divisão Celular
Proliferação Celular
Regulação Neoplásica da Expressão Gênica
Seres Humanos
Proteínas de Membrana/genética
Mitocôndrias/genética
Mitocôndrias/metabolismo
Mitocôndrias/patologia
Proteínas Mitocondriais/genética
Neoplasias/genética
Neoplasias/patologia
Transdução de Sinais
Proteínas Supressoras de Tumor/genética
Proteínas Supressoras de Tumor/metabolismo
beta-Lactamases/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Membrane Proteins); 0 (Mitochondrial Proteins); 0 (Tumor Suppressor Proteins); EC 3.4.- (LACTB protein, human); EC 3.5.2.6 (beta-Lactamases); EC 4.1.1.- (Carboxy-Lyases); EC 4.1.1.65 (phosphatidylserine decarboxylase)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180219
[Lr] Data última revisão:
180219
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170504
[St] Status:MEDLINE


  3 / 8394 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29233695
[Au] Autor:Son HF; Kim KJ
[Ad] Endereço:School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daehak-ro 80, Buk-ku, Daegu, 41566, Republic of Korea.
[Ti] Título:Structural basis for substrate specificity of meso-diaminopimelic acid decarboxylase from Corynebacterium glutamicum.
[So] Source:Biochem Biophys Res Commun;495(2):1815-1821, 2018 01 08.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:l-lysine is an essential amino acid that is widely used as a food supplement for humans and animals. meso-Diaminopimelic acid decarboxylase (DAPDC) catalyzes the final step in the de novol-lysine biosynthetic pathway by converting meso-diaminopimelic acid (meso-DAP) into l-lysine by decarboxylation reaction. To elucidate its molecular mechanisms, we determined the crystal structure of DAPDC from Corynebacterium glutamicum (CgDAPDC). The PLP cofactor is bound at the center of the barrel domain and forms a Schiff base with the catalytic Lys75 residue. We also determined the CgDAPDC structure in complex with both pyridoxal 5'-phosphate (PLP) and the l-lysine product and revealed that the protein has an optimal substrate binding pocket to accommodate meso-DAP as a substrate. Structural comparison of CgDAPDC with other amino acid decarboxylases with different substrate specificities revealed that the position of the α15 helix in CgDAPDC and the residues located on the helix are crucial for determining the substrate specificities of the amino acid decarboxylases.
[Mh] Termos MeSH primário: Proteínas de Bactérias/química
Proteínas de Bactérias/metabolismo
Carboxiliases/química
Carboxiliases/metabolismo
Corynebacterium glutamicum/enzimologia
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Proteínas de Bactérias/genética
Carboxiliases/genética
Domínio Catalítico
Corynebacterium glutamicum/genética
Cristalografia por Raios X
Lisina/biossíntese
Modelos Moleculares
Mutagênese Sítio-Dirigida
Estrutura Quaternária de Proteína
Fosfato de Piridoxal/metabolismo
Homologia de Sequência de Aminoácidos
Especificidade por Substrato
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Bacterial Proteins); 5V5IOJ8338 (Pyridoxal Phosphate); EC 4.1.1.- (Carboxy-Lyases); EC 4.1.1.20 (diaminopimelic acid decarboxylase); K3Z4F929H6 (Lysine)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180212
[Lr] Data última revisão:
180212
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171214
[St] Status:MEDLINE


  4 / 8394 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29227591
[Au] Autor:Korneeva KL; Rodriguez RR; Ralchenko SV; Martunovska OV; Frolova AO; Martsenyuk OP; Manzhula LV; Melnyk VT; Shkoropad OY; Obolenska MY
[Ti] Título:Expression of genes, encoding the enzymes of cysteine metabolism in human placenta in the first and third trimesters of uncomplicated pregnancy.
[So] Source:Ukr Biochem J;88(1):88-98, 2016 Jan-Feb.
[Is] ISSN:2409-4943
[Cp] País de publicação:Ukraine
[La] Idioma:eng
[Ab] Resumo:The cellular cysteine is highly regulated in a narrow range of concentrations due to its cyto- and neurtoxicity when it is overwhelmed or its deficiency for protein synthesis and other vital metabolic reactions when its amount is restricted. The regulation of cysteine content and its metabolic products, glutathione, taurine and inorganic sulfur compounds, is scarcely explored in human placenta though cysteine metabolism is closely related to the maintenance of redox status and protection from free radical oxidation, elimination of homocysteine and detoxification. These processes are particularly important for placenta which meets substantial changes of oxygen supply during its development, and is the last metabolically active organ between mother and fetus. The abundance of CDO , CSAD , ADO , SUOX, GCLC and GCLM mRNAs was estimated by RT -qPCR and compared with the computationally analyzed microarray gene expression data from GEO , while the level of individual protein ­ by western-blot analysis, both in placental samples from first and third trimesters of uncomplicated pregnancies. The abundance of CDO mRNA is significantly up-regulated at term compared to the first trimester, the level of GCLM and GCLC mRNAs remains almost unchanged while the abundance of other mRNAs reduces to varying degrees. Overall, the changes of gene expression in third trimester in comparison to the first one estimated by RT-qPCR and microarray coincide while the former data are more informative for the limited group of genes. The data provide the basis for further research of these genes expression and phenotype of human placenta in health and disease
[Mh] Termos MeSH primário: Carboxiliases/genética
Cisteína Dioxigenase/genética
Cisteína/metabolismo
Dioxigenases/genética
Glutamato-Cisteína Ligase/genética
Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética
[Mh] Termos MeSH secundário: Adulto
Carboxiliases/metabolismo
Cisteína Dioxigenase/metabolismo
Dioxigenases/metabolismo
Feminino
Regulação da Expressão Gênica
Glutamato-Cisteína Ligase/metabolismo
Seres Humanos
Redes e Vias Metabólicas/genética
Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo
Placenta/metabolismo
Gravidez
Primeiro Trimestre da Gravidez
Terceiro Trimestre da Gravidez
RNA Mensageiro/genética
RNA Mensageiro/metabolismo
Fatores de Tempo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (RNA, Messenger); EC 1.13.11.- (Dioxygenases); EC 1.13.11.19 (cysteamine dioxygenase); EC 1.13.11.20 (Cysteine Dioxygenase); EC 1.13.11.20 (cysteine dioxygenase, type I, human); EC 1.8.- (Oxidoreductases Acting on Sulfur Group Donors); EC 1.8.3.1 (SUOX protein, human); EC 4.1.1.- (Carboxy-Lyases); EC 4.1.1.29 (sulfoalanine decarboxylase); EC 6.3.2.2 (GCLC protein, human); EC 6.3.2.2 (Glutamate-Cysteine Ligase); EC 6.3.2.2 (glutamate-cysteine ligase modifier subunit, human); K848JZ4886 (Cysteine)
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180116
[Lr] Data última revisão:
180116
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171212
[St] Status:MEDLINE
[do] DOI:10.15407/ubj88.01.088


  5 / 8394 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27770224
[Au] Autor:Wang Z; Bai X; Guo X; He X
[Ad] Endereço:CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China.
[Ti] Título:Regulation of crucial enzymes and transcription factors on 2-phenylethanol biosynthesis via Ehrlich pathway in Saccharomyces cerevisiae.
[So] Source:J Ind Microbiol Biotechnol;44(1):129-139, 2017 Jan.
[Is] ISSN:1476-5535
[Cp] País de publicação:Germany
[La] Idioma:eng
[Ab] Resumo:2-Phenylethanol (2-PE) is widely used in food, perfume and pharmaceutical industry, but lower production in microbes and less known regulatory mechanisms of 2-PE make further study necessary. In this study, crucial genes like ARO8 and ARO10 of Ehrlich pathway for 2-PE synthesis and key transcription factor ARO80 in Saccharomyces cerevisiae were re-regulated using constitutive promoter; in the meantime, the effect of nitrogen source in synthetic complete (SC) medium with L-phenylalanine (L-Phe) on Aro8/Aro9 and Aro10 was investigated. The results showed that aromatic aminotransferase activities of ARO8 over-expressing strains were seriously inhibited by ammonia sulfate in SC + Phe medium. Flask fermentation test demonstrated that over-expressing ARO8 or ARO10 led to about 42 % increase in 2-PE production when compared with the control strain. Furthermore, influence of transcription factors Cat8 and Mig1 on 2-PE biosynthesis was explored. CAT8 over-expression or MIG1 deletion increased in the transcription of ARO9 and ARO10. 2-PE production of CAT8 over-expressing strain was 62 % higher than that of control strain. Deletion of MIG1 also led to 2-PE biosynthesis enhancement. The strain of CAT8 over-expression and MIG1 deletion was most effective in regulating expression of ARO9 and ARO10. Analysis of mRNA levels and enzyme activities indicates that transaminase in Ehrlich pathway is the crucial target of Nitrogen Catabolize Repression (NCR). Among the engineering strains, the higher 3.73 g/L 2-PE production in CAT8 over-expressing strain without in situ product recovery suggests that the robust strain has potentiality for commercial exploitation.
[Mh] Termos MeSH primário: Álcool Feniletílico/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
Saccharomyces cerevisiae/metabolismo
Fatores de Transcrição/metabolismo
[Mh] Termos MeSH secundário: Carboxiliases/metabolismo
Fermentação
Metabolismo
Fenilalanina/metabolismo
Engenharia de Proteínas/métodos
RNA Mensageiro/metabolismo
Transaminases/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (RNA, Messenger); 0 (Saccharomyces cerevisiae Proteins); 0 (Transcription Factors); 47E5O17Y3R (Phenylalanine); EC 2.6.1.- (Transaminases); EC 4.1.1.- (Carboxy-Lyases); ML9LGA7468 (Phenylethyl Alcohol)
[Em] Mês de entrada:1712
[Cu] Atualização por classe:171211
[Lr] Data última revisão:
171211
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161023
[St] Status:MEDLINE
[do] DOI:10.1007/s10295-016-1852-5


  6 / 8394 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28931093
[Au] Autor:Smith JA; Bar-Peled M
[Ad] Endereço:Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA, United States of America.
[Ti] Título:Synthesis of UDP-apiose in Bacteria: The marine phototroph Geminicoccus roseus and the plant pathogen Xanthomonas pisi.
[So] Source:PLoS One;12(9):e0184953, 2017.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The branched-chain sugar apiose was widely assumed to be synthesized only by plant species. In plants, apiose-containing polysaccharides are found in vascularized plant cell walls as the pectic polymers rhamnogalacturonan II and apiogalacturonan. Apiosylated secondary metabolites are also common in many plant species including ancestral avascular bryophytes and green algae. Apiosyl-residues have not been documented in bacteria. In a screen for new bacterial glycan structures, we detected small amounts of apiose in methanolic extracts of the aerobic phototroph Geminicoccus roseus and the pathogenic soil-dwelling bacteria Xanthomonas pisi. Apiose was also present in the cell pellet of X. pisi. Examination of these bacterial genomes uncovered genes with relatively low protein homology to plant UDP-apiose/UDP-xylose synthase (UAS). Phylogenetic analysis revealed that these bacterial UAS-like homologs belong in a clade distinct to UAS and separated from other nucleotide sugar biosynthetic enzymes. Recombinant expression of three bacterial UAS-like proteins demonstrates that they actively convert UDP-glucuronic acid to UDP-apiose and UDP-xylose. Both UDP-apiose and UDP-xylose were detectable in cell cultures of G. roseus and X. pisi. We could not, however, definitively identify the apiosides made by these bacteria, but the detection of apiosides coupled with the in vivo transcription of bUAS and production of UDP-apiose clearly demonstrate that these microbes have evolved the ability to incorporate apiose into glycans during their lifecycles. While this is the first report to describe enzymes for the formation of activated apiose in bacteria, the advantage of synthesizing apiose-containing glycans in bacteria remains unknown. The characteristics of bUAS and its products are discussed.
[Mh] Termos MeSH primário: Alphaproteobacteria/metabolismo
Carboxiliases/metabolismo
Ervilhas/microbiologia
Açúcares de Uridina Difosfato/biossíntese
Xanthomonas/metabolismo
[Mh] Termos MeSH secundário: Alphaproteobacteria/crescimento & desenvolvimento
Filogenia
Xanthomonas/crescimento & desenvolvimento
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (UDP-apiose); 0 (Uridine Diphosphate Sugars); EC 4.1.1.- (Carboxy-Lyases); EC 4.1.1.35 (UDPglucuronate decarboxylase)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171017
[Lr] Data última revisão:
171017
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170921
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0184953


  7 / 8394 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28931053
[Au] Autor:Deng J; Gao H; Gao Z; Zhao H; Yang Y; Wu Q; Wu B; Jiang C
[Ad] Endereço:State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China.
[Ti] Título:Identification and molecular characterization of a metagenome-derived L-lysine decarboxylase gene from subtropical soil microorganisms.
[So] Source:PLoS One;12(9):e0185060, 2017.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:L-lysine decarboxylase (LDC, EC 4.1.1.18) is a key enzyme in the decarboxylation of L-lysine to 1,5-pentanediamine and efficiently contributes significance to biosynthetic capability. Metagenomic technology is a shortcut approach used to obtain new genes from uncultured microorganisms. In this study, a subtropical soil metagenomic library was constructed, and a putative LDC gene named ldc1E was isolated by function-based screening strategy through the indication of pH change by L-lysine decarboxylation. Amino acid sequence comparison and homology modeling indicated the close relation between Ldc1E and other putative LDCs. Multiple sequence alignment analysis revealed that Ldc1E contained a highly conserved motif Ser-X-His-Lys (Pxl), and molecular docking results showed that this motif was located in the active site and could combine with the cofactor pyridoxal 5'-phosphate. The ldc1E gene was subcloned into the pET-30a(+) vector and highly expressed in Escherichia coli BL21 (DE3) pLysS. The recombinant protein was purified to homogeneity. The maximum activity of Ldc1E occurred at pH 6.5 and 40°C using L-lysine monohydrochloride as the substrate. Recombinant Ldc1E had apparent Km, kcat, and kcat/Km values of 1.08±0.16 mM, 5.09±0.63 s-1, and 4.73×103 s-1 M-1, respectively. The specific activity of Ldc1E was 1.53±0.06 U mg-1 protein. Identifying a metagenome-derived LDC gene provided a rational reference for further gene modifications in industrial applications.
[Mh] Termos MeSH primário: Carboxiliases/genética
Carboxiliases/metabolismo
Metagenoma
Microbiologia do Solo
[Mh] Termos MeSH secundário: Cadaverina/biossíntese
Carboxiliases/química
Domínio Catalítico
China
Clima
Clonagem Molecular
Escherichia coli/genética
Concentração de Íons de Hidrogênio
Metais/química
Conformação Proteica
Homologia Estrutural de Proteína
Especificidade por Substrato
Temperatura Ambiente
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Metals); EC 4.1.1.- (Carboxy-Lyases); EC 4.1.1.18 (lysine decarboxylase); L90BEN6OLL (Cadaverine)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171017
[Lr] Data última revisão:
171017
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170921
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0185060


  8 / 8394 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28872321
[Au] Autor:Christenson JK; Robinson SL; Engel TA; Richman JE; Kim AN; Wackett LP
[Ad] Endereço:Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota , Minneapolis, Minnesota 55455, United States.
[Ti] Título:OleB from Bacterial Hydrocarbon Biosynthesis Is a ß-Lactone Decarboxylase That Shares Key Features with Haloalkane Dehalogenases.
[So] Source:Biochemistry;56(40):5278-5287, 2017 Oct 10.
[Is] ISSN:1520-4995
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:OleB is an α/ß-hydrolase found in bacteria that biosynthesize long-chain olefinic hydrocarbons, but its function has remained obscure. We report that OleB from the Gram-negative bacterium Xanthomonas campestris performs an unprecedented ß-lactone decarboxylation reaction, to complete cis-olefin biosynthesis. OleB reactions monitored by H nuclear magnetic resonance spectroscopy revealed a selectivity for decarboxylating cis-ß-lactones and no discernible activity with trans-ß-lactones, consistent with the known configuration of pathway intermediates. Protein sequence analyses showed OleB proteins were most related to haloalkane dehalogenases (HLDs) and retained the canonical Asp-His-Asp catalytic triad of HLDs. Unexpectedly, it was determined that an understudied subfamily, denoted as HLD-III, is comprised mostly of OleB proteins encoded within oleABCD gene clusters, suggesting a misannotation. OleB from X. campestris showed very low dehalogenase activity only against haloalkane substrates with long alkyl chains. A haloalkane substrate mimic alkylated wild-type X. campestris OleB but not OleB , implicating this residue as the active site nucleophile as in HLDs. A sequence-divergent OleB, found as part of a natural OleBC fusion and classified as an HLD-III, from the Gram-positive bacterium Micrococcus luteus was demonstrated to have the same activity, stereochemical preference, and dependence on the proposed Asp nucleophile. H O studies with M. luteus OleBC suggested that the canonical alkyl-enzyme intermediate of HLDs is hydrolyzed differently by OleB enzymes, as O is not incorporated into the nucleophilic aspartic acid. This work defines a previously unrecognized reaction in nature, functionally identifies some HLD-III enzymes as ß-lactone decarboxylases, and posits an enzymatic mechanism of ß-lactone decarboxylation.
[Mh] Termos MeSH primário: Carboxiliases/metabolismo
Hidrocarbonetos/metabolismo
Hidrolases/metabolismo
Lactonas/metabolismo
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Biocatálise
Carboxiliases/química
Carboxiliases/genética
Mutagênese Sítio-Dirigida
Especificidade por Substrato
Xanthomonas campestris/enzimologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Hydrocarbons); 0 (Lactones); EC 3.- (Hydrolases); EC 3.8.1.5 (haloalkane dehalogenase); EC 4.1.1.- (Carboxy-Lyases)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171019
[Lr] Data última revisão:
171019
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170906
[St] Status:MEDLINE
[do] DOI:10.1021/acs.biochem.7b00667


  9 / 8394 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28832133
[Au] Autor:Arnott ZLP; Nozaki S; Monteiro DCF; Morgan HE; Pearson AR; Niki H; Webb ME
[Ad] Endereço:Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds , Leeds LS2 9JT, U.K.
[Ti] Título:The Mechanism of Regulation of Pantothenate Biosynthesis by the PanD-PanZ·AcCoA Complex Reveals an Additional Mode of Action for the Antimetabolite N-Pentyl Pantothenamide (N5-Pan).
[So] Source:Biochemistry;56(37):4931-4939, 2017 Sep 19.
[Is] ISSN:1520-4995
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The antimetabolite pentyl pantothenamide has broad spectrum antibiotic activity but exhibits enhanced activity against Escherichia coli. The PanDZ complex has been proposed to regulate the pantothenate biosynthetic pathway in E. coli by limiting the supply of ß-alanine in response to coenzyme A concentration. We show that formation of such a complex between activated aspartate decarboxylase (PanD) and PanZ leads to sequestration of the pyruvoyl cofactor as a ketone hydrate and demonstrate that both PanZ overexpression-linked ß-alanine auxotrophy and pentyl pantothenamide toxicity are due to formation of this complex. This both demonstrates that the PanDZ complex regulates pantothenate biosynthesis in a cellular context and validates the complex as a target for antibiotic development.
[Mh] Termos MeSH primário: Acetilcoenzima A/metabolismo
Carboxiliases/metabolismo
Escherichia coli K12/metabolismo
Proteínas de Escherichia coli/metabolismo
Glutamato Descarboxilase/metabolismo
Modelos Moleculares
[Mh] Termos MeSH secundário: Acetilcoenzima A/análogos & derivados
Acetilcoenzima A/química
Substituição de Aminoácidos
Antibacterianos/farmacologia
Antimetabólitos/farmacologia
Sítios de Ligação
Calorimetria
Carboxiliases/química
Carboxiliases/genética
Coenzima A/síntese química
Coenzima A/química
Coenzima A/metabolismo
Cristalografia por Raios X
Ativação Enzimática/efeitos dos fármacos
Escherichia coli K12/efeitos dos fármacos
Escherichia coli K12/crescimento & desenvolvimento
Proteínas de Escherichia coli/química
Proteínas de Escherichia coli/genética
Deleção de Genes
Glutamato Descarboxilase/antagonistas & inibidores
Glutamato Descarboxilase/química
Glutamato Descarboxilase/genética
Cinética
Mutação
Ácido Pantotênico/análogos & derivados
Ácido Pantotênico/farmacologia
Conformação Proteica
Multimerização Proteica
Proteínas Recombinantes/química
Proteínas Recombinantes/metabolismo
Titulometria
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Anti-Bacterial Agents); 0 (Antimetabolites); 0 (Escherichia coli Proteins); 0 (N-pentylpantothenamide); 0 (PanZ protein, E coli); 0 (Recombinant Proteins); 19F5HK2737 (Pantothenic Acid); 72-89-9 (Acetyl Coenzyme A); EC 4.1.1.- (Carboxy-Lyases); EC 4.1.1.- (PanD protein, E coli); EC 4.1.1.11 (aspartate-alpha-decarboxylase); EC 4.1.1.15 (Glutamate Decarboxylase); SAA04E81UX (Coenzyme A)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171003
[Lr] Data última revisão:
171003
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170824
[St] Status:MEDLINE
[do] DOI:10.1021/acs.biochem.7b00509


  10 / 8394 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28754323
[Au] Autor:Marshall SA; Payne KAP; Leys D
[Ad] Endereço:Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
[Ti] Título:The UbiX-UbiD system: The biosynthesis and use of prenylated flavin (prFMN).
[So] Source:Arch Biochem Biophys;632:209-221, 2017 Oct 15.
[Is] ISSN:1096-0384
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The UbiX-UbiD system consists of the flavin prenyltransferase UbiX that produces prenylated FMN that serves as the cofactor for the (de)carboxylase UbiD. Recent developments have provided structural insights into the mechanism of both enzymes, detailing unusual chemistry in each case. The proposed reversible 1,3-dipolar cycloaddition between the cofactor and substrate serves as a model to explain many of the key UbiD family features. However, considerable variation exists in the many branches of the UbiD family tree.
[Mh] Termos MeSH primário: Carboxiliases
Dimetilaliltranstransferase
Proteínas de Escherichia coli
Escherichia coli
Flavinas
Flavoproteínas
Prenilação/fisiologia
[Mh] Termos MeSH secundário: Carboxiliases/química
Carboxiliases/genética
Carboxiliases/metabolismo
Dimetilaliltranstransferase/química
Dimetilaliltranstransferase/genética
Dimetilaliltranstransferase/metabolismo
Escherichia coli/química
Escherichia coli/genética
Escherichia coli/metabolismo
Proteínas de Escherichia coli/química
Proteínas de Escherichia coli/genética
Proteínas de Escherichia coli/metabolismo
Flavinas/biossíntese
Flavinas/química
Flavinas/genética
Flavoproteínas/química
Flavoproteínas/genética
Flavoproteínas/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Escherichia coli Proteins); 0 (Flavins); 0 (Flavoproteins); EC 2.5.1.1 (Dimethylallyltranstransferase); EC 4.1.1.- (3-octaprenyl-4-hydroxybenzoate carboxy-lyase); EC 4.1.1.- (Carboxy-Lyases); EC 4.1.1.- (ubiX protein, E coli)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171026
[Lr] Data última revisão:
171026
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170730
[St] Status:MEDLINE



página 1 de 840 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde