Base de dados : MEDLINE
Pesquisa : D08.811.520.224.125.750 [Categoria DeCS]
Referências encontradas : 602 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 61 ir para página                         

  1 / 602 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28650429
[Au] Autor:Kim JM; To TK; Matsui A; Tanoi K; Kobayashi NI; Matsuda F; Habu Y; Ogawa D; Sakamoto T; Matsunaga S; Bashir K; Rasheed S; Ando M; Takeda H; Kawaura K; Kusano M; Fukushima A; Endo TA; Kuromori T; Ishida J; Morosawa T; Tanaka M; Torii C; Takebayashi Y; Sakakibara H; Ogihara Y; Saito K; Shinozaki K; Devoto A; Seki M
[Ad] Endereço:Plant Genomic Network Research Team, RIKEN Centre for Sustainable Resource Science (CSRS), 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan.
[Ti] Título:Acetate-mediated novel survival strategy against drought in plants.
[So] Source:Nat Plants;3:17097, 2017 Jun 26.
[Is] ISSN:2055-0278
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Water deficit caused by global climate changes seriously endangers the survival of organisms and crop productivity, and increases environmental deterioration . Plants' resistance to drought involves global reprogramming of transcription, cellular metabolism, hormone signalling and chromatin modification . However, how these regulatory responses are coordinated via the various pathways, and the underlying mechanisms, are largely unknown. Herein, we report an essential drought-responsive network in which plants trigger a dynamic metabolic flux conversion from glycolysis into acetate synthesis to stimulate the jasmonate (JA) signalling pathway to confer drought tolerance. In Arabidopsis, the ON/OFF switching of this whole network is directly dependent on histone deacetylase HDA6. In addition, exogenous acetic acid promotes de novo JA synthesis and enrichment of histone H4 acetylation, which influences the priming of the JA signalling pathway for plant drought tolerance. This novel acetate function is evolutionarily conserved as a survival strategy against environmental changes in plants. Furthermore, the external application of acetic acid successfully enhanced the drought tolerance in Arabidopsis, rapeseed, maize, rice and wheat plants. Our findings highlight a radically new survival strategy that exploits an epigenetic switch of metabolic flux conversion and hormone signalling by which plants adapt to drought.
[Mh] Termos MeSH primário: Acetatos/metabolismo
Arabidopsis/fisiologia
Secas
[Mh] Termos MeSH secundário: Aclimatação
Aldeído Oxirredutases/metabolismo
Arabidopsis/genética
Proteínas de Arabidopsis/metabolismo
Ciclopentanos/metabolismo
Epigênese Genética
Glicólise
Histona Desacetilases/metabolismo
Oxilipinas/metabolismo
Plantas Geneticamente Modificadas
Ligação Proteica
Piruvato Descarboxilase/metabolismo
Transdução de Sinais
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Acetates); 0 (Arabidopsis Proteins); 0 (Cyclopentanes); 0 (Oxylipins); 6RI5N05OWW (jasmonic acid); EC 1.2.- (Aldehyde Oxidoreductases); EC 1.2.1.5 (aldehyde dehydrogenase (NAD(P)+)); EC 3.5.1.- (HDA6 protein, Arabidopsis); EC 3.5.1.98 (Histone Deacetylases); EC 4.1.1.1 (Pyruvate Decarboxylase)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:170717
[Lr] Data última revisão:
170717
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170627
[St] Status:MEDLINE
[do] DOI:10.1038/nplants.2017.97


  2 / 602 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28433914
[Au] Autor:Tsuyama T; Yamaguchi M; Kamei I
[Ad] Endereço:Faculty of Agriculture, University of Miyazaki, 1-1, Gakuen-kibanadai-nishi, Miyazaki 889-2192, Japan.
[Ti] Título:Accumulation of sugar from pulp and xylitol from xylose by pyruvate decarboxylase-negative white-rot fungus Phlebia sp. MG-60.
[So] Source:Bioresour Technol;238:241-247, 2017 Aug.
[Is] ISSN:1873-2976
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Phlebia sp. MG-60 is a white-rot fungus that produces ethanol with high efficiency from lignocellulosic biomass without additional enzymes. Through engineering of this powerful metabolic pathway for fermentation in Phlebia sp. MG-60, chemical compounds other than ethanol could be produced. Here, we demonstrate sugar accumulation from unbleached hardwood kraft pulp and conversion of xylose to xylitol by pyruvate decarboxylase (pdc)-negative Phlebia sp. MG-60. We isolated Phlebia sp. strain MG-60-P2 from protoplasts to unify the protoplast phenotypes of the regenerated strains. Homologous recombination achieved a stable pdc-knockout line, designated KO77. The KO77 line produced traces of ethanol, but accumulated xylitol from xylose or glucose from unbleached hardwood kraft pulp. These metabolic changes in the pdc-knockout strain reflect the potential of metabolic engineering in Phlebia sp. MG-60 for direct production of chemical compounds from lignocellulosic biomass.
[Mh] Termos MeSH primário: Basidiomycota
Piruvato Descarboxilase
Xilitol
Xilose
[Mh] Termos MeSH secundário: Biomassa
Reatores Biológicos
Etanol
Fermentação
Saccharomyces cerevisiae
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
3K9958V90M (Ethanol); A1TA934AKO (Xylose); EC 4.1.1.1 (Pyruvate Decarboxylase); VCQ006KQ1E (Xylitol)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171023
[Lr] Data última revisão:
171023
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170424
[St] Status:MEDLINE


  3 / 602 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28296385
[Au] Autor:Paulikat M; Wechsler C; Tittmann K; Mata RA
[Ad] Endereço:Institute of Physical Chemistry, University of Goettingen , Tammannstraße 6, D-37077 Göttingen, Germany.
[Ti] Título:Theoretical Studies of the Electronic Absorption Spectra of Thiamin Diphosphate in Pyruvate Decarboxylase.
[So] Source:Biochemistry;56(13):1854-1864, 2017 Apr 04.
[Is] ISSN:1520-4995
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Electronic absorption spectra are oftentimes used to identify reaction intermediates or substrates/products in enzymatic systems, as long as absorption bands can be unequivocally assigned to the species being studied. The latter task is far from trivial given the transient nature of some states and the complexity of the surrounding environment around the active site. To identify unique spectral fingerprints, controlled experiments with model compounds have been used in the past, but even these can sometimes be unreliable. Circular dichroism (CD) and ultraviolet-visible spectra have been tools of choice in the study of the rich chemistry of thiamin diphosphate-dependent enzymes. In this study, we focus on the Zymomonas mobilis pyruvate decarboxylase, and mutant analogues thereof, as a prototypical representative of the thiamin diphosphate (ThDP) enzyme superfamily. Through the use of electronic structure methods, we analyze the nature of electronic excitations in the cofactor. We find that all the determining CD bands around the 280-340 nm spectral range correspond to charge-transfer excitations between the pyrimidine and thiazolium rings of ThDP, which, most likely, is a general property of related ThDP-dependent enzymes. While we can confirm the assignments of previously proposed bands to chemical states, our calculations further suggest that a hitherto unassigned band of enzyme-bound ThDP reports on the ionization state of the canonical glutamate that is required for cofactor activation. This finding expands the spectroscopic "library" of chemical states of ThDP enzymes, permitting a simultaneous assignment of both the cofactor ThDP and the activating glutamate. We anticipate this finding to be helpful for mechanistic analyses of related ThDP enzymes.
[Mh] Termos MeSH primário: Proteínas de Bactérias/química
Coenzimas/química
Ácido Glutâmico/química
Piruvato Descarboxilase/química
Tiamina Pirofosfato/química
Zymomonas/química
[Mh] Termos MeSH secundário: Proteínas de Bactérias/genética
Proteínas de Bactérias/metabolismo
Domínio Catalítico
Coenzimas/metabolismo
Transporte de Elétrons
Expressão Gênica
Ácido Glutâmico/metabolismo
Cinética
Simulação de Dinâmica Molecular
Mutação
Estrutura Secundária de Proteína
Pirimidinas/química
Piruvato Descarboxilase/genética
Piruvato Descarboxilase/metabolismo
Eletricidade Estática
Termodinâmica
Tiamina Pirofosfato/metabolismo
Zymomonas/enzimologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Coenzymes); 0 (Pyrimidines); 3KX376GY7L (Glutamic Acid); EC 4.1.1.1 (Pyruvate Decarboxylase); K8CXK5Q32L (pyrimidine); Q57971654Y (Thiamine Pyrophosphate)
[Em] Mês de entrada:1705
[Cu] Atualização por classe:170515
[Lr] Data última revisão:
170515
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170316
[St] Status:MEDLINE
[do] DOI:10.1021/acs.biochem.6b00984


  4 / 602 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28204883
[Au] Autor:Kim SJ; Kim JW; Lee YG; Park YC; Seo JH
[Ad] Endereço:Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
[Ti] Título:Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production.
[So] Source:Appl Microbiol Biotechnol;101(6):2241-2250, 2017 Mar.
[Is] ISSN:1432-0614
[Cp] País de publicação:Germany
[La] Idioma:eng
[Ab] Resumo:Saccharomyces cerevisiae is a work horse for production of valuable biofuels and biochemicals including 2,3-butanediol (2,3-BDO), a platform chemical with wide industrial applications for synthetic rubber, biosolvents and food additives. Recently, a cutting-edge technology of metabolic engineering has enabled S. cerevisiae to produce 2,3-BDO with high yield and productivity. These include (i) amplification of the 2,3-BDO biosynthetic pathway, (ii) redirection of carbon flux from ethanol or glycerol toward 2,3-BDO, and (iii) 2,3-BDO production from sugars derived from renewable biomass. These breakthroughs enforced S. cerevisiae to become a promising microbial host for production of 2,3-BDO.
[Mh] Termos MeSH primário: Butileno Glicóis/metabolismo
Proteínas Fúngicas/genética
Regulação Fúngica da Expressão Gênica
Engenharia Metabólica/métodos
Redes e Vias Metabólicas/genética
Saccharomyces cerevisiae/genética
[Mh] Termos MeSH secundário: Acetolactato Sintase/genética
Acetolactato Sintase/metabolismo
Oxirredutases do Álcool/genética
Oxirredutases do Álcool/metabolismo
Biocombustíveis
Biomassa
Carboxiliases/genética
Carboxiliases/metabolismo
Etanol/metabolismo
Proteínas Fúngicas/metabolismo
Glicerol/metabolismo
Piruvato Descarboxilase/deficiência
Piruvato Descarboxilase/genética
Saccharomyces cerevisiae/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Biofuels); 0 (Butylene Glycols); 0 (Fungal Proteins); 3K9958V90M (Ethanol); 45427ZB5IJ (2,3-butylene glycol); EC 1.1.- (Alcohol Oxidoreductases); EC 1.1.1.4 (butanediol dehydrogenase); EC 2.2.1.6 (Acetolactate Synthase); EC 4.1.1.- (Carboxy-Lyases); EC 4.1.1.1 (Pyruvate Decarboxylase); EC 4.1.1.5 (acetolactate decarboxylase); PDC6A3C0OX (Glycerol)
[Em] Mês de entrada:1703
[Cu] Atualização por classe:170307
[Lr] Data última revisão:
170307
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170217
[St] Status:MEDLINE
[do] DOI:10.1007/s00253-017-8172-1


  5 / 602 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28170226
[Au] Autor:Spinka M; Seiferheld S; Zimmermann P; Bergner E; Blume AK; Schierhorn A; Reichenbach T; Pertermann R; Ehrt C; König S
[Ad] Endereço:Department for Enzymology, Institute of Biochemistry & Biotechnology, Faculty of Biosciences, Martin-Luther-University Halle-Wittenberg , 06120 Halle (Saale), Germany.
[Ti] Título:Significance of Individual Residues at the Regulatory Site of Yeast Pyruvate Decarboxylase for Allosteric Substrate Activation.
[So] Source:Biochemistry;56(9):1285-1298, 2017 Mar 07.
[Is] ISSN:1520-4995
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The catalytic activity of the allosteric enzyme pyruvate decarboxylase from yeast is strictly controlled by its own substrate pyruvate via covalent binding at a separate regulatory site. Kinetic studies, chemical modifications, cross-linking, small-angle X-ray scattering, and crystal structure analyses have led to a detailed understanding of the substrate activation mechanism at an atomic level with C221 as the core moiety of the regulatory site. To characterize the individual role of the residues adjacent to C221, we generated variants H92F, H225F, H310F, A287G, S311A, and C221A/C222A. The integrity of the protein structure of the variants was established by small-angle X-ray scattering measurements. The analyses of both steady state and transient kinetic data allowed the identification of the individual roles of the exchanged side chains during allosteric enzyme activation. In each case, the kinetic pattern of activation was modulated but not completely abolished. Despite the crucial role of C221, the covalent binding of pyruvate is not obligate for enzyme activation but is a requirement for a kinetically efficient transition from the inactive to the active state. Moreover, only one of the three histidines guiding the activator molecule to the binding pocket, H310, specifically interacts with C221. H310 stabilizes the thiolate form of C221, ensuring a rapid nucleophilic attack of the thiolate sulfur on C2 of the regulatory pyruvate, thus forming a regulatory dyad. The influence of the other two histidines is less pronounced. Substrate activation is slightly weakened for A287G and significantly retarded for S311A.
[Mh] Termos MeSH primário: Piruvato Descarboxilase/química
Piruvato Descarboxilase/metabolismo
Saccharomyces cerevisiae/enzimologia
[Mh] Termos MeSH secundário: Regulação Alostérica
Ativação Enzimática
Cinética
Multimerização Proteica
Estrutura Terciária de Proteína
Ácido Pirúvico/metabolismo
Especificidade por Substrato
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
8558G7RUTR (Pyruvic Acid); EC 4.1.1.1 (Pyruvate Decarboxylase)
[Em] Mês de entrada:1705
[Cu] Atualização por classe:170508
[Lr] Data última revisão:
170508
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170208
[St] Status:MEDLINE
[do] DOI:10.1021/acs.biochem.6b01158


  6 / 602 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28100303
[Au] Autor:Pade N; Mikkat S; Hagemann M
[Ad] Endereço:1​Department Plant Physiology, University of Rostock, Institute for Biological Science, Albert-Einstein-Str. 3, 18059 Rostock, Germany.
[Ti] Título:Ethanol, glycogen and glucosylglycerol represent competing carbon pools in ethanol-producing cells of Synechocystis sp. PCC 6803 under high-salt conditions.
[So] Source:Microbiology;163(3):300-307, 2017 Mar.
[Is] ISSN:1465-2080
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Cyanobacteria are photoautotrophic micro-organisms, which are increasingly being used as microbial cell factories to produce, for example, ethanol directly from solar energy and CO2. Here, we analysed the effects of different salt concentrations on an ethanol-producing strain of Synechocystis sp. PCC 6803 that overexpresses the pyruvate decarboxylase (pdc) from Zymomonas mobilis and the native alcohol dehydrogenase (adhA). Moderate salinities of 2 % NaCl had no negative impact on ethanol production, whereas the addition of 4 % NaCl resulted in significantly decreased ethanol yields compared to low-salt conditions. Proteomic analysis identified a defined set of proteins with increased abundances in ethanol-producing cells. Among them, we found strong up-regulation of α-1,4 glucan phosphorylase (GlgP, Slr1367) in the producer strain, which consistently resulted in a massive depletion of glycogen pools in these cells regardless of the salinity. The salt-induced accumulation of the compatible solute glucosylglycerol was not affected by the ethanol production. Glycogen and probably compatible solutes could present competing pools with respect to organic carbon, explaining the decreased ethanol production at the highest salinity.
[Mh] Termos MeSH primário: Etanol/metabolismo
Glucosídeos/biossíntese
Glicogênio/biossíntese
Cloreto de Sódio/metabolismo
Synechocystis/metabolismo
[Mh] Termos MeSH secundário: Álcool Desidrogenase/metabolismo
Metabolismo Energético/genética
Metabolismo Energético/fisiologia
Fosforilases/biossíntese
Piruvato Descarboxilase/genética
Piruvato Descarboxilase/metabolismo
Synechocystis/genética
Zymomonas/enzimologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Glucosides); 0 (glucosylglycerol); 3K9958V90M (Ethanol); 451W47IQ8X (Sodium Chloride); 9005-79-2 (Glycogen); EC 1.1.1.1 (Alcohol Dehydrogenase); EC 2.4.1.- (Phosphorylases); EC 4.1.1.1 (Pyruvate Decarboxylase)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171010
[Lr] Data última revisão:
171010
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170120
[St] Status:MEDLINE
[do] DOI:10.1099/mic.0.000433


  7 / 602 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28031482
[Au] Autor:Wang CY; Wang YT; Hsiao WY; Wang SW
[Ad] Endereço:Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County 350, Taiwan, Republic of China.
[Ti] Título:Involvement of fission yeast Pdc2 in RNA degradation and P-body function.
[So] Source:RNA;23(4):493-503, 2017 Apr.
[Is] ISSN:1469-9001
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:In this study we identified Pdc2, the fission yeast ortholog of human Pat1b protein, which forms a complex with Lsm1-7 and plays a role in coupling deadenylation and decapping. The involvement of Pdc2 in RNA degradation and P-body function was also determined. We found that Pdc2 interacts with Dcp2 and is required for decapping in vivo. Although not absolutely essential for P-body assembly, overexpression of Pdc2 enhanced P-body formation even in the absence of Pdc1, the fission yeast functional homolog of human Edc4 protein, indicating that Pdc2 also plays a role in P-body formation. Intriguingly, in the absence of Pdc2, Lsm1 was found to accumulate in the nucleus, suggesting that Pdc2 shuttling between nucleus and cytoplasm plays a role in decreasing the nuclear concentration of Lsm1 to increase Lsm1 in the cytoplasm. Furthermore, unlike other components of P-bodies, the deadenylase Ccr4 did not accumulate in P-bodies in cells growing under favorable conditions and was only recruited to P-bodies after deprivation of glucose in a Pdc2-Lsm1-dependent manner, indicating a function of Pdc2 in cellular response to environmental stress. In supporting this idea, mutants are defective in recovery from glucose starvation with a much longer time to re-enter the cell cycle. In keeping with the notion that Pat1 is a nucleocytoplasmic protein, functioning also in the nucleus, we found that Pdc2 physically and genetically interacts with the nuclear 5'-3' exonuclease Dhp1. A function of Pdc2-Lsm1, in concert with Dhp1, regulating RNA by promoting its decapping/destruction in the nucleus was suggested.
[Mh] Termos MeSH primário: Exorribonucleases/genética
Regulação Fúngica da Expressão Gênica
Piruvato Descarboxilase/genética
Estabilidade de RNA
RNA Fúngico/genética
Proteínas de Schizosaccharomyces pombe/genética
Schizosaccharomyces/genética
Fatores de Transcrição/genética
[Mh] Termos MeSH secundário: Transporte Ativo do Núcleo Celular
Sequência de Bases
Ciclo Celular/genética
Núcleo Celular/genética
Núcleo Celular/metabolismo
Citoplasma/genética
Citoplasma/metabolismo
Proteínas de Ligação a DNA/genética
Proteínas de Ligação a DNA/metabolismo
Exorribonucleases/metabolismo
Proteínas Fúngicas/genética
Proteínas Fúngicas/metabolismo
Glucose/deficiência
Glucose/farmacologia
Seres Humanos
Proteínas Serina-Treonina Quinases/genética
Proteínas Serina-Treonina Quinases/metabolismo
Piruvato Descarboxilase/metabolismo
Proteínas de Ligação ao Cap de RNA/genética
Proteínas de Ligação ao Cap de RNA/metabolismo
RNA Fúngico/metabolismo
Proteínas de Ligação a RNA/genética
Proteínas de Ligação a RNA/metabolismo
Schizosaccharomyces/efeitos dos fármacos
Schizosaccharomyces/metabolismo
Proteínas de Schizosaccharomyces pombe/metabolismo
Fatores de Transcrição/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Ccr4 protein, S pombe); 0 (DNA-Binding Proteins); 0 (Dcp2 protein, S pombe); 0 (Fungal Proteins); 0 (PATL1 protein, human); 0 (RNA Cap-Binding Proteins); 0 (RNA, Fungal); 0 (RNA-Binding Proteins); 0 (Schizosaccharomyces pombe Proteins); 0 (Transcription Factors); EC 2.7.1.- (ran1 protein, S pombe); EC 2.7.11.1 (Protein-Serine-Threonine Kinases); EC 3.1.- (Exoribonucleases); EC 3.1.- (dhp1protein, S pombe); EC 4.1.1.1 (Pyruvate Decarboxylase); IY9XDZ35W2 (Glucose)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170906
[Lr] Data última revisão:
170906
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161230
[St] Status:MEDLINE
[do] DOI:10.1261/rna.059766.116


  8 / 602 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27955868
[Au] Autor:Zhang B; Zhu Y; Zhang J; Wang D; Sun L; Hong J
[Ad] Endereço:School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China.
[Ti] Título:Engineered Kluyveromyces marxianus for pyruvate production at elevated temperature with simultaneous consumption of xylose and glucose.
[So] Source:Bioresour Technol;224:553-562, 2017 Jan.
[Is] ISSN:1873-2976
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Xylose and glucose from lignocellulose are sustainable sources for production of pyruvate, which is the starting material for the synthesis of many drugs and agrochemicals. In this study, the pyruvate decarboxylase gene (KmPDC1) and glycerol-3-phosphate dehydrogenase gene (KmGPD1) of Kluyveromyces marxianus YZJ051 were disrupted to prevent ethanol and glycerol accumulation. The deficient growth of PDC disruption was rescued by overexpressing mutant KmMTH1-ΔT. Then pentose phosphate pathway and xylitol dehydrogenase SsXYL2-ARS genes were overexpressed to obtain strain YZB053 which produced pyruvate with xylose other than glucose. It produced 24.62g/L pyruvate from 80g/L xylose with productivity of 0.51g/L/h at 42°C. Then, xylose-specific transporter ScGAL2-N376F was overexpressed to obtain strain YZB058, which simultaneously consumed 40g/L glucose and 20g/L xylose and produced 29.21g/L pyruvate with productivity of 0.81g/L/h at 42°C. Therefore, a platform for pyruvate production from glucose and xylose at elevated temperature was developed.
[Mh] Termos MeSH primário: Engenharia Genética/métodos
Glucose/metabolismo
Kluyveromyces/metabolismo
Ácido Pirúvico/metabolismo
Xilose/metabolismo
[Mh] Termos MeSH secundário: D-Xilulose Redutase/genética
D-Xilulose Redutase/metabolismo
Etanol/metabolismo
Fermentação
Regulação Fúngica da Expressão Gênica
Glucose/genética
Glicerol/metabolismo
Glicerolfosfato Desidrogenase/genética
Glicerolfosfato Desidrogenase/metabolismo
Kluyveromyces/genética
Piruvato Descarboxilase/genética
Piruvato Descarboxilase/metabolismo
Temperatura Ambiente
Xilose/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
3K9958V90M (Ethanol); 8558G7RUTR (Pyruvic Acid); A1TA934AKO (Xylose); EC 1.1.- (Glycerolphosphate Dehydrogenase); EC 1.1.1.9 (D-Xylulose Reductase); EC 4.1.1.1 (Pyruvate Decarboxylase); IY9XDZ35W2 (Glucose); PDC6A3C0OX (Glycerol)
[Em] Mês de entrada:1702
[Cu] Atualização por classe:170217
[Lr] Data última revisão:
170217
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161214
[St] Status:MEDLINE


  9 / 602 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27426989
[Au] Autor:Novy V; Brunner B; Müller G; Nidetzky B
[Ad] Endereço:Graz University of Technology, Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.
[Ti] Título:Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background.
[So] Source:Biotechnol Bioeng;114(1):163-171, 2017 Jan.
[Is] ISSN:1097-0290
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:l-Lactic acid is an important platform chemical and its production from the lignocellulosic sugars glucose and xylose is, therefore, of high interest. Tolerance to low pH and a generally high robustness make Saccharomyces cerevisiae a promising host for l-lactic acid fermentation but strain development for effective utilization of both sugars is an unsolved problem. The herein used S. cerevisiae strain IBB10B05 incorporates a NADH-dependent pathway for oxidoreductive xylose assimilation within CEN.PK113-7D background and was additionally evolved for accelerated xylose-to-ethanol fermentation. Selecting the Plasmodium falciparum l-lactate dehydrogenase (pfLDH) for its high kinetic efficiency, strain IBB14LA1 was derived from IBB10B05 by placing the pfldh gene at the pdc1 locus under control of the pdc1 promotor. Strain IBB14LA1_5 additionally had the pdc5 gene disrupted. With both strains, continued l-lactic acid formation from glucose or xylose, each at 50 g/L, necessitated stabilization of pH. Using calcium carbonate (11 g/L), anaerobic shaken bottle fermentations at pH ≥ 5 resulted in l-lactic acid yields (Y ) of 0.67 g/g glucose and 0.80 g/g xylose for strain IBB14LA1_5. Only little xylitol was formed (≤0.08 g/g) and no ethanol. In pH stabilized aerobic conversions of glucose, strain IBB14LA1_5 further showed excellent l-lactic acid productivities (1.8 g/L/h) without losses in Y (0.69 g/g glucose). In strain IBB14LA1, the Y was lower (≤0.18 g/g glucose; ≤0.27 g/g xylose) due to ethanol as well as xylitol formation. Therefore, this study shows that a S. cerevisiae strain originally optimized for xylose-to-ethanol fermentation was useful to implement l-lactic acid production from glucose and xylose; and with the metabolic engineering strategy applied, advance toward homolactic fermentation of both sugars was made. Biotechnol. Bioeng. 2017;114: 163-171. © 2016 Wiley Periodicals, Inc.
[Mh] Termos MeSH primário: L-Lactato Desidrogenase/metabolismo
Ácido Láctico/metabolismo
Engenharia Metabólica/métodos
Piruvato Descarboxilase/genética
Saccharomyces cerevisiae/genética
Saccharomyces cerevisiae/metabolismo
[Mh] Termos MeSH secundário: Anaerobiose
Fermentação
Glucose/metabolismo
L-Lactato Desidrogenase/genética
Proteínas Recombinantes/genética
Proteínas Recombinantes/metabolismo
Proteínas de Saccharomyces cerevisiae/genética
Proteínas de Saccharomyces cerevisiae/metabolismo
Deleção de Sequência
Xilose/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Recombinant Proteins); 0 (Saccharomyces cerevisiae Proteins); 33X04XA5AT (Lactic Acid); A1TA934AKO (Xylose); EC 1.1.1.27 (L-Lactate Dehydrogenase); EC 4.1.1.1 (Pyruvate Decarboxylase); IY9XDZ35W2 (Glucose)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171012
[Lr] Data última revisão:
171012
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160719
[St] Status:MEDLINE
[do] DOI:10.1002/bit.26048


  10 / 602 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27627879
[Au] Autor:Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R
[Ad] Endereço:Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja, Departamento de Enología, Instituto de Ciencias de la Vid y del Vino, Finca La Grajera, Ctra. De Burgos Km. 6, 26007, Logroño, La Rioja, Spain.
[Ti] Título:Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.
[So] Source:Microb Cell Fact;15(1):156, 2016 Sep 15.
[Is] ISSN:1475-2859
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:BACKGROUND: Aerobic fermentation of grape must, leading to respiro-fermentative metabolism of sugars, has been proposed as way of reducing alcohol content in wines. Two factors limit the usefulness of Saccharomyces cerevisiae for this application, the Crabtree effect, and excess volatile acidity under aerobic conditions. This work aimed to explore the impact on ethanol acetate production of different S. cerevisiae strains deleted for genes previously related with the Crabtree phenotype. RESULTS: Recombinant strains were constructed on a wine industrial genetic background, FX10. All yeast strains, including FX10, showed respiro-fermentative metabolism in natural grape must under aerobic conditions, as well as a concomitant reduction in ethanol yield. This indicates that the Crabtree effect is not a major constrain for reaching relevant respiration levels in grape must. Indeed, only minor differences in ethanol yield were observed between the original and some of the recombinant strains. In contrast, some yeast strains showed a relevant reduction of acetic acid production. This was identified as a positive feature for the feasibility of alcohol level reduction by respiration. Reduced acetic acid production was confirmed by a thorough analysis of these and some additional deletion strains (involving genes HXK2, PYK1, REG1, PDE2 and PDC1). Some recombinant yeasts showed altered production of glycerol and pyruvate derived metabolites. CONCLUSIONS: REG1 and PDC1 deletion strains showed a strong reduction of acetic acid yield in aerobic fermentations. Since REG1 defective strains may be obtained by non-GMO approaches, these gene modifications show good promise to help reducing ethanol content in wines.
[Mh] Termos MeSH primário: Ácido Acético/metabolismo
Etanol/metabolismo
Fermentação
Proteínas Fúngicas/genética
Hexoquinase/genética
Proteína Fosfatase 1/genética
Piruvato Descarboxilase/genética
Proteínas de Saccharomyces cerevisiae/genética
Saccharomyces cerevisiae/genética
Saccharomyces cerevisiae/metabolismo
[Mh] Termos MeSH secundário: Aerobiose
Proteínas Fúngicas/metabolismo
Deleção de Genes
Glicerol/metabolismo
Hexoquinase/metabolismo
Proteína Fosfatase 1/metabolismo
Piruvato Descarboxilase/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
Vitis/metabolismo
Vinho/análise
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Fungal Proteins); 0 (Saccharomyces cerevisiae Proteins); 3K9958V90M (Ethanol); EC 2.7.1.1 (HXK2 protein, S cerevisiae); EC 2.7.1.1 (Hexokinase); EC 3.1.3.16 (Protein Phosphatase 1); EC 3.1.3.16 (REG1 protein, S cerevisiae); EC 4.1.1.1 (PDC1 protein, S cerevisiae); EC 4.1.1.1 (Pyruvate Decarboxylase); PDC6A3C0OX (Glycerol); Q40Q9N063P (Acetic Acid)
[Em] Mês de entrada:1704
[Cu] Atualização por classe:170406
[Lr] Data última revisão:
170406
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160916
[St] Status:MEDLINE
[do] DOI:10.1186/s12934-016-0555-y



página 1 de 61 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde