Base de dados : MEDLINE
Pesquisa : D08.811.682.047.150.700 [Categoria DeCS]
Referências encontradas : 1438 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 144 ir para página                         

  1 / 1438 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28450226
[Au] Autor:Hara A; Endo S; Matsunaga T; El-Kabbani O; Miura T; Nishinaka T; Terada T
[Ad] Endereço:Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
[Ti] Título:Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs.
[So] Source:Biochem Pharmacol;138:185-192, 2017 08 15.
[Is] ISSN:1873-2968
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Human carbonyl reductase 1 (CBR1), a member of the short-chain dehydrogenase/reductase (SDR) superfamily, reduces a variety of carbonyl compounds including endogenous isatin, prostaglandin E and 4-oxo-2-nonenal. It is also a major non-cytochrome P450 enzyme in the phase I metabolism of carbonyl-containing drugs, and is highly expressed in the intestine. In this study, we found that long-chain fatty acids and their CoA ester derivatives inhibit CBR1. Among saturated fatty acids, myristic, palmitic and stearic acids were inhibitory, and stearic acid was the most potent (IC 9µM). Unsaturated fatty acids (oleic, elaidic, γ-linolenic and docosahexaenoic acids) and acyl-CoAs (palmitoyl-, stearoyl- and oleoyl-CoAs) were more potent inhibitors (IC 1.0-2.5µM), and showed high inhibitory selectivity to CBR1 over its isozyme CBR3 and other SDR superfamily enzymes (DCXR and DHRS4) with CBR activity. The inhibition by these fatty acids and acyl-CoAs was competitive with respect to the substrate, showing the K values of 0.49-1.2µM. Site-directed mutagenesis of the substrate-binding residues of CBR1 suggested that the interactions between the fatty acyl chain and the enzyme's Met141 and Trp229 are important for the inhibitory selectivity. We also examined CBR1 inhibition by oleic acid in cellular levels: The fatty acid effectively inhibited CBR1-mediated 4-oxo-2-nonenal metabolism in colon cancer DLD1 cells and increased sensitivity to doxorubicin in the drug-resistant gastric cancer MKN45 cells that highly express CBR1. The results suggest a possible new food-drug interaction through inhibition of CBR1-mediated intestinal first-pass drug metabolism by dietary fatty acids.
[Mh] Termos MeSH primário: Acil Coenzima A/metabolismo
Oxirredutases do Álcool/antagonistas & inibidores
Ácidos Graxos não Esterificados/metabolismo
Mucosa Intestinal/enzimologia
[Mh] Termos MeSH secundário: Oxirredutases do Álcool/genética
Oxirredutases do Álcool/metabolismo
Sítios de Ligação
Ligação Competitiva
Linhagem Celular Tumoral
Resistência a Medicamentos Antineoplásicos
Interações Alimento-Droga
Seres Humanos
Mutação
Ácido Mirístico/metabolismo
Proteínas de Neoplasias/antagonistas & inibidores
Proteínas de Neoplasias/metabolismo
Oxirredutases/antagonistas & inibidores
Oxirredutases/genética
Oxirredutases/metabolismo
Ácido Palmítico/metabolismo
Palmitoil Coenzima A/metabolismo
Proteínas Recombinantes/química
Proteínas Recombinantes/metabolismo
Ácidos Esteáricos/metabolismo
Desidrogenase do Álcool de Açúcar/antagonistas & inibidores
Desidrogenase do Álcool de Açúcar/genética
Desidrogenase do Álcool de Açúcar/metabolismo
[Pt] Tipo de publicação:COMPARATIVE STUDY; JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Acyl Coenzyme A); 0 (Fatty Acids, Nonesterified); 0 (Neoplasm Proteins); 0 (Recombinant Proteins); 0 (Stearic Acids); 0I3V7S25AW (Myristic Acid); 1716-06-9 (oleoyl-coenzyme A); 1763-10-6 (Palmitoyl Coenzyme A); 2V16EO95H1 (Palmitic Acid); 362-66-3 (stearoyl-coenzyme A); 4ELV7Z65AP (stearic acid); EC 1.- (Oxidoreductases); EC 1.1.- (Alcohol Oxidoreductases); EC 1.1.- (Sugar Alcohol Dehydrogenases); EC 1.1.1.10 (L-xylulose reductase); EC 1.1.1.184 (CBR1 protein, human); EC 1.1.1.184 (CBR3 protein, human); EC 1.1.1.184 (DHRS4 protein, human)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:180201
[Lr] Data última revisão:
180201
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170429
[St] Status:MEDLINE


  2 / 1438 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28695861
[Au] Autor:Hatti K; Mathiharan YK; Srinivasan N; Murthy MRN
[Ad] Endereço:Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560 012, India.
[Ti] Título:Seeing but not believing: the structure of glycerol dehydrogenase initially assumed to be the structure of a survival protein from Salmonella typhimurium.
[So] Source:Acta Crystallogr D Struct Biol;73(Pt 7):609-617, 2017 Jul 01.
[Is] ISSN:2059-7983
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The determination of the crystal structure of a mutant protein using phases based on a previously determined crystal structure of the wild-type protein is often a straightforward molecular-replacement protocol. Such a structure determination may be difficult if there are large-scale structural differences between the wild-type and mutant proteins. In this manuscript, an interesting case is presented of the unintentional crystallization of a contaminant protein which shared some structural features with the presumed target protein, leading to difficulties in obtaining a completely satisfactory molecular-replacement structure solution. It was not immediately evident that the initial structure solution was incorrect owing to the poor quality of the X-ray diffraction data and low resolution. The structure was subsequently determined by improving the quality of the data and following a sequence-independent MarathonMR protocol. The structure corresponded to that of glycerol dehydrogenase, which crystallized as a contaminant, instead of the presumed mutant of a survival protein encoded by Salmonella typhimurium. The reasons why a solution that appeared to be reasonable was obtained with an incorrect protein model are discussed. The results presented here show that a degree of caution is warranted when handling large-scale structure-determination projects.
[Mh] Termos MeSH primário: Proteínas de Bactérias/química
Cristalização/métodos
Cristalografia por Raios X/métodos
Salmonella typhimurium/química
Desidrogenase do Álcool de Açúcar/química
[Mh] Termos MeSH secundário: Modelos Moleculares
Conformação Proteica
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); EC 1.1.- (Sugar Alcohol Dehydrogenases); EC 1.1.1.6 (glycerol dehydrogenase)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:170726
[Lr] Data última revisão:
170726
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170712
[St] Status:MEDLINE
[do] DOI:10.1107/S2059798317007677


  3 / 1438 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28595002
[Au] Autor:Yang S; Jan YH; Mishin V; Heck DE; Laskin DL; Laskin JD
[Ad] Endereço:Department of Environmental and Occupational Health, Rutgers University School of Public Health , Piscataway, New Jersey 08854, United States.
[Ti] Título:Diacetyl/l-Xylulose Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells.
[So] Source:Chem Res Toxicol;30(7):1406-1418, 2017 Jul 17.
[Is] ISSN:1520-5010
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Reactive carbonyls such as diacetyl (2,3-butanedione) and 2,3-pentanedione in tobacco and many food and consumer products are known to cause severe respiratory diseases. Many of these chemicals are detoxified by carbonyl reductases in the lung, in particular, dicarbonyl/l-xylulose reductase (DCXR), a multifunctional enzyme important in glucose metabolism. DCXR is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Using recombinant human enzyme, we discovered that DCXR mediates redox cycling of a variety of quinones generating superoxide anion, hydrogen peroxide, and, in the presence of transition metals, hydroxyl radicals. Redox cycling activity preferentially utilized NADH as a cosubstrate and was greatest for 9,10-phenanthrenequinone and 1,2-naphthoquinone, followed by 1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone (menadione). Using 9,10-phenanthrenequinone as the substrate, quinone redox cycling was found to inhibit DCXR reduction of l-xylulose and diacetyl. Competitive inhibition of enzyme activity by the quinone was observed with respect to diacetyl (K = 190 µM) and l-xylulose (K = 940 µM). Abundant DCXR activity was identified in A549 lung epithelial cells when diacetyl was used as a substrate. Quinones inhibited reduction of this dicarbonyl, causing an accumulation of diacetyl in the cells and culture medium and a decrease in acetoin, the reduced product of diacetyl. The identification of DCXR as an enzyme activity mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. These activities, together with the inhibition of dicarbonyl/l-xylulose metabolism by redox-active chemicals, as well as consequent deficiencies in pentose metabolism, are likely to contribute to lung injury following exposure to dicarbonyls and quinones.
[Mh] Termos MeSH primário: Células Epiteliais/metabolismo
Pulmão/patologia
Desidrogenase do Álcool de Açúcar/metabolismo
[Mh] Termos MeSH secundário: Células A549
Relação Dose-Resposta a Droga
Células Epiteliais/enzimologia
Seres Humanos
Pulmão/enzimologia
Pulmão/metabolismo
Estrutura Molecular
Oxirredução
Quinonas/química
Quinonas/farmacologia
Relação Estrutura-Atividade
Desidrogenase do Álcool de Açúcar/antagonistas & inibidores
Desidrogenase do Álcool de Açúcar/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Quinones); EC 1.1.- (Sugar Alcohol Dehydrogenases); EC 1.1.1.10 (L-xylulose reductase)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171123
[Lr] Data última revisão:
171123
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170609
[St] Status:MEDLINE
[do] DOI:10.1021/acs.chemrestox.7b00052


  4 / 1438 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28367095
[Au] Autor:Rahman MS; Xu CC; Ma K; Nanda M; Qin W
[Ad] Endereço:Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada;; Department of Microbiology, University of Chittagong, Bangladesh.
[Ti] Título:High Production of 2,3-butanediol by a Mutant Strain of the Newly Isolated SRP2 with Increased Tolerance Towards Glycerol.
[So] Source:Int J Biol Sci;13(3):308-318, 2017.
[Is] ISSN:1449-2288
[Cp] País de publicação:Australia
[La] Idioma:eng
[Ab] Resumo:Biodiesel, a renewable fuel produced by transesterification of animal fats and vegetable oils, generates about 10% (v/v) of crude glycerol as a core byproduct. The high volume of this non bio-degradable glycerol is becoming of a great environmental and economical concern due to its worldwide ever-growing surplus. Herein we report a high production of 2,3-butanediol (2,3-BD) from pure and biodiesel derived crude glycerol using a mutant SRM2 obtained from a newly isolated strain SRP2. The mutant strain SRM2 with standing high glycerol concentration (220 g L of medium) could rapidly convert glycerol aerobically to 2,3-BD, a versatile product extensively used in chemical, pharmaceutical and fuel industries Our study revealed that an increased GDH activity led to a substantially enhanced production of 2,3-BD. The mutant strain exhibited 1.3-fold higher activity of GDH than that of parent strain (500.08 vs. 638.6 µmol min mg protein), yielding of 32.3 g L and 77.5 g L 2,3-BD with glycerol in batch and fed-batch process respectively. However, in batch culture with crude glycerol, cell growth and glycerol consumption were expressively boosted, and 2,3-BD production was 27.7 g L from 75.0 g/L crude glycerol. In this report, the optimal conditions for high production of 2,3-BD were defined in a completely aerobic process, and 0.59 g g product yield of 2,3-BD was attained by the mutated strain SRM2, which is the highest amount obtained from batch biotransformation process of glycerol metabolism till today. These results indicated that our newly developed mutant can tolerate high concentration of glycerol, have a high glycerol utilization rate, and high product yield of 2,3-BD. It is demonstrated that the mutant strain SRM2 has an ability to produce fewer co-products at trace concentrations at higher glycerol concentrations, and could be a potential candidate for 2,3-DB production in an industrial bioconversion process.
[Mh] Termos MeSH primário: Butileno Glicóis/metabolismo
Glicerol/farmacologia
Klebsiella pneumoniae/efeitos dos fármacos
Klebsiella pneumoniae/patogenicidade
[Mh] Termos MeSH secundário: Técnicas de Cultura Celular por Lotes
Desidrogenase do Álcool de Açúcar/genética
Desidrogenase do Álcool de Açúcar/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Butylene Glycols); 45427ZB5IJ (2,3-butylene glycol); EC 1.1.- (Sugar Alcohol Dehydrogenases); EC 1.1.1.6 (glycerol dehydrogenase); PDC6A3C0OX (Glycerol)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171107
[Lr] Data última revisão:
171107
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170404
[St] Status:MEDLINE
[do] DOI:10.7150/ijbs.17594


  5 / 1438 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28043209
[Au] Autor:Kang DM; Tanaka K; Takenaka S; Ishikawa S; Yoshida KI
[Ad] Endereço:a Department of Agrobioscience , Graduate School of Agricultural Science, Kobe University , Kobe , Japan.
[Ti] Título:Bacillus subtilis iolU encodes an additional NADP -dependent scyllo-inositol dehydrogenase.
[So] Source:Biosci Biotechnol Biochem;81(5):1026-1032, 2017 May.
[Is] ISSN:1347-6947
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Bacillus subtilis genes iolG, iolW, iolX, ntdC, yfiI, yrbE, yteT, and yulF belong to the Gfo/Idh/MocA family. The functions of iolG, iolW, iolX, and ntdC are known; however, the functions of the others are unknown. We previously reported the B. subtilis cell factory simultaneously overexpressing iolG and iolW to achieve bioconversion of myo-inositol (MI) into scyllo-inositol (SI). YulF shares a significant similarity with IolW, the NADP -dependent SI dehydrogenase. Transcriptional abundance of yulF did not correlate to that of iol genes involved in inositol metabolism. However, when yulF was overexpressed instead of iolW in the B. subtilis cell factory, SI was produced from MI, suggesting a similar function to iolW. In addition, we demonstrated that recombinant His -tagged YulF converted scyllo-inosose into SI in an NADPH-dependent manner. We have thus identified yulF encoding an additional NADP -dependent SI dehydrogenase, which we propose to rename iolU.
[Mh] Termos MeSH primário: Bacillus subtilis/enzimologia
Bacillus subtilis/genética
Inositol/metabolismo
NADP/metabolismo
Desidrogenase do Álcool de Açúcar/genética
Desidrogenase do Álcool de Açúcar/metabolismo
[Mh] Termos MeSH secundário: Ativação Enzimática
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
1VS4X81277 (scyllitol); 4L6452S749 (Inositol); 53-59-8 (NADP); EC 1.1.- (Sugar Alcohol Dehydrogenases)
[Em] Mês de entrada:1704
[Cu] Atualização por classe:171116
[Lr] Data última revisão:
171116
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170104
[St] Status:MEDLINE
[do] DOI:10.1080/09168451.2016.1268043


  6 / 1438 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27849146
[Au] Autor:Ano Y; Hours RA; Akakabe Y; Kataoka N; Yakushi T; Matsushita K; Adachi O
[Ad] Endereço:a Department of Bioscience , Graduate School of Agriculture, Ehime University , Matsuyama , Japan.
[Ti] Título:Membrane-bound glycerol dehydrogenase catalyzes oxidation of D-pentonates to 4-keto-D-pentonates, D-fructose to 5-keto-D-fructose, and D-psicose to 5-keto-D-psicose.
[So] Source:Biosci Biotechnol Biochem;81(2):411-418, 2017 Feb.
[Is] ISSN:1347-6947
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:A novel oxidation of D-pentonates to 4-keto-D-pentonates was analyzed with Gluconobacter thailandicus NBRC 3258. D-Pentonate 4-dehydrogenase activity in the membrane fraction was readily inactivated by EDTA and it was reactivated by the addition of PQQ and Ca . D-Pentonate 4-dehydrogenase was purified to two different subunits, 80 and 14 kDa. The absorption spectrum of the purified enzyme showed no typical absorbance over the visible regions. The enzyme oxidized D-pentonates to 4-keto-D-pentonates at the optimum pH of 4.0. In addition, the enzyme oxidized D-fructose to 5-keto-D-fructose, D-psicose to 5-keto-D-psicose, including the other polyols such as, glycerol, D-ribitol, D-arabitol, and D-sorbitol. Thus, D-pentonate 4-dehydrogenase was found to be identical with glycerol dehydrogenase (GLDH), a major polyol dehydrogenase in Gluconobacter species. The reaction versatility of quinoprotein GLDH was notified in this study.
[Mh] Termos MeSH primário: Biocatálise
Membrana Celular/enzimologia
Frutose/análogos & derivados
Desidrogenase do Álcool de Açúcar/metabolismo
[Mh] Termos MeSH secundário: Membrana Celular/metabolismo
Frutose/química
Genômica
Gluconobacter/enzimologia
Oxirredução
Solubilidade
Desidrogenase do Álcool de Açúcar/química
Desidrogenase do Álcool de Açúcar/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
1684-29-3 (5-ketofructose); 23140-52-5 (psicose); 30237-26-4 (Fructose); EC 1.1.- (Sugar Alcohol Dehydrogenases); EC 1.1.1.6 (glycerol dehydrogenase)
[Em] Mês de entrada:1702
[Cu] Atualização por classe:170207
[Lr] Data última revisão:
170207
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161117
[St] Status:MEDLINE
[do] DOI:10.1080/09168451.2016.1254535


  7 / 1438 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27836608
[Au] Autor:Mahadevan A; Fernando S
[Ad] Endereço:Department of Biological and Agricultural Engineering, Texas A&M University, 303C Scoates Hall, College Station TX 77843, USA.
[Ti] Título:An improved glycerol biosensor with an Au-FeS-NAD-glycerol-dehydrogenase anode.
[So] Source:Biosens Bioelectron;92:417-424, 2017 Jun 15.
[Is] ISSN:1873-4235
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:An improved glycerol biosensor was developed via direct attachment of NAD -glycerol dehydrogenase coenzyme-apoenzyme complex onto supporting gold electrodes, using novel inorganic iron (II) sulfide (FeS)-based single molecular wires. Sensing performance factors, i.e., sensitivity, a detection limit and response time of the FeS and conventional pyrroloquinoline quinone (PQQ)-based biosensor were evaluated by dynamic constant potential amperometry at 1.3V under non-buffered conditions. For glycerol concentrations ranging from 1 to 25mM, a 77% increase in sensitivity and a 53% decrease in detection limit were observed for the FeS-based biosensor when compared to the conventional PQQ-based counterpart. The electrochemical behavior of the FeS-based glycerol biosensor was analyzed at different concentrations of glycerol, accompanied by an investigation into the effects of applied potential and scan rate on the current response. Effects of enzyme stimulants ((NH ) SO and MnCl ·4H O) concentrations and buffers/pH (potassium phosphate buffer pH 6-8, Tris buffer pH 8-10) on the current responses generated by the FeS-based glycerol biosensor were also studied. The optimal detection conditions were 0.03M (NH ) SO and 0.3µm MnCl ·4H O in non-buffered aqueous electrolyte under stirring whereas under non-stirring, Tris buffer at pH 10 with 0.03M (NH ) SO and 30µm MnCl ·4H O were found to be optimal detection conditions. Interference by glucose, fructose, ethanol, and acetic acid in glycerol detection was studied. The observations indicated a promising enhancement in glycerol detection using the novel FeS-based glycerol sensing electrode compared to the conventional PQQ-based one. These findings support the premise that FeS-based bioanodes are capable of biosensing glycerol successfully and may be applicable for other enzymatic biosensors.
[Mh] Termos MeSH primário: Técnicas Biossensoriais/métodos
Cellulomonas/enzimologia
Compostos Ferrosos/química
Glicerol/análise
Ouro/química
Desidrogenase do Álcool de Açúcar/metabolismo
[Mh] Termos MeSH secundário: Técnicas Eletroquímicas/métodos
Eletrodos
Enzimas Imobilizadas/química
Enzimas Imobilizadas/metabolismo
Glicerol/metabolismo
Limite de Detecção
Modelos Moleculares
Desidrogenase do Álcool de Açúcar/química
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Enzymes, Immobilized); 0 (Ferrous Compounds); 7440-57-5 (Gold); EC 1.1.- (Sugar Alcohol Dehydrogenases); EC 1.1.1.6 (glycerol dehydrogenase); PDC6A3C0OX (Glycerol); TH5J4TUX6S (ferrous sulfide)
[Em] Mês de entrada:1703
[Cu] Atualização por classe:170330
[Lr] Data última revisão:
170330
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161113
[St] Status:MEDLINE


  8 / 1438 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27506274
[Au] Autor:Sukpipat W; Komeda H; Prasertsan P; Asano Y
[Ad] Endereço:Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand; Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
[Ti] Título:Purification and characterization of xylitol dehydrogenase with l-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2.
[So] Source:J Biosci Bioeng;123(1):20-27, 2017 Jan.
[Is] ISSN:1347-4421
[Cp] País de publicação:Japan
[La] Idioma:eng
[Ab] Resumo:Meyerozyma caribbica strain 5XY2, which was isolated from an alcohol fermentation starter in Thailand, was found to catabolize l-arabinose as well as d-glucose and d-xylose. The highest production amounts of ethanol from d-glucose, xylitol from d-xylose, and l-arabitol from l-arabinose were 0.45 g/g d-glucose, 0.60 g/g d-xylose, and 0.61 g/g l-arabinose with 21.7 g/L ethanol, 20.2 g/L xylitol, and 30.3 g/l l-arabitol, respectively. The enzyme with l-arabitol dehydrogenase (LAD) activity was purified from the strain and found to exhibit broad specificity to polyols, such as xylitol, d-sorbitol, ribitol, and l-arabitol. Xylitol was the preferred substrate with K =16.1 mM and k /K =67.0 min mM , while l-arabitol was also a substrate for the enzyme with K =31.1 mM and k /K =6.5 min mM . Therefore, this enzyme from M. caribbica was named xylitol dehydrogenase (McXDH). McXDH had an optimum temperature and pH at 40°C and 9.5, respectively. The McXDH gene included a coding sequence of 1086 bp encoding a putative 362 amino acid protein of 39 kDa with an apparent homopentamer structure. Native McXDH and recombinant McXDH exhibited relative activities toward l-arabitol of approximately 20% that toward xylitol, suggesting the applicability of this enzyme with the functions of XDH and LAD to the development of pentose-fermenting Saccharomyces cerevisiae.
[Mh] Termos MeSH primário: D-Xilulose Redutase/isolamento & purificação
D-Xilulose Redutase/metabolismo
Fermentação
Pentoses/metabolismo
Saccharomycetales/metabolismo
Desidrogenase do Álcool de Açúcar/metabolismo
[Mh] Termos MeSH secundário: Etanol/metabolismo
Glucose/metabolismo
Oxirredução
Saccharomycetales/enzimologia
Álcoois Açúcares/metabolismo
Xilitol/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Pentoses); 0 (Sugar Alcohols); 3K9958V90M (Ethanol); EC 1.1.- (Sugar Alcohol Dehydrogenases); EC 1.1.1.11 (D-arabinitol dehydrogenase); EC 1.1.1.9 (D-Xylulose Reductase); IY9XDZ35W2 (Glucose); VCQ006KQ1E (Xylitol)
[Em] Mês de entrada:1704
[Cu] Atualização por classe:170817
[Lr] Data última revisão:
170817
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160811
[St] Status:MEDLINE


  9 / 1438 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27876710
[Au] Autor:Lin X; Liu S; Xie G; Chen J; Li P; Chen J
[Ad] Endereço:School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
[Ti] Título:Enhancement of 1,3-Dihydroxyacetone Production from by Combined Mutagenesis.
[So] Source:J Microbiol Biotechnol;26(11):1908-1917, 2016 Nov 28.
[Is] ISSN:1738-8872
[Cp] País de publicação:Korea (South)
[La] Idioma:eng
[Ab] Resumo:Wild strain L-6 was subjected to combined mutagenesis, including UV irradiation, atmospheric and room temperature plasma, and ion beam implantation, to increase the yield of 1,3-dihydroxyacetone (DHA). With application of a high-throughput screening method, mutant I-2-239 with a DHA productivity of 103.5 g/l in flask-shake fermentation was finally obtained with the starting glycerol concentration of 120 g/l, which was 115.7% higher than the wild strain. The cultivation time also decreased from 54 h to 36 h. Compared with the wild strain, a dramatic increase in enzyme activity was observed for the mutant strain, although the increase in biomass was limited. DNA and amino acid sequence alignment revealed 11 nucleotide substitutions and 10 amino acid substitutions between the of strains L-6 and I-2-239. Simulation of the 3-D structure and prediction of active site residues and PQQ binding site residues suggested that these mutations were mainly related to PQQ binding, which was speculated to be favorable for the catalyzing capacity of glycerol dehydrogenase. RT-qPCR assay indicated that the transcription levels of and in the mutant strain were respectively 4.8-fold and 5.4-fold higher than that in the wild strain, suggesting another possible reason for the increased DHA productivity of the mutant strain.
[Mh] Termos MeSH primário: Di-Hidroxiacetona/biossíntese
Gluconobacter oxydans/genética
Gluconobacter oxydans/metabolismo
[Mh] Termos MeSH secundário: Proteínas de Bactérias/genética
Proteínas de Bactérias/metabolismo
Fermentação
Gluconobacter oxydans/enzimologia
Mutagênese
Mutação
Desidrogenase do Álcool de Açúcar/genética
Desidrogenase do Álcool de Açúcar/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); EC 1.1.- (Sugar Alcohol Dehydrogenases); EC 1.1.1.6 (glycerol dehydrogenase); O10DDW6JOO (Dihydroxyacetone)
[Em] Mês de entrada:1703
[Cu] Atualização por classe:170308
[Lr] Data última revisão:
170308
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161124
[St] Status:MEDLINE
[do] DOI:10.4014/jmb.1604.04019


  10 / 1438 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27760187
[Au] Autor:Somabhai CA; Raghuvanshi R; Nareshkumar G
[Ad] Endereço:Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara-390002, India.
[Ti] Título:Genetically Engineered Escherichia coli Nissle 1917 Synbiotics Reduce Metabolic Effects Induced by Chronic Consumption of Dietary Fructose.
[So] Source:PLoS One;11(10):e0164860, 2016.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:AIMS: To assess protective efficacy of genetically modified Escherichia coli Nissle 1917 (EcN) on metabolic effects induced by chronic consumption of dietary fructose. MATERIALS AND METHODS: EcN was genetically modified with fructose dehydrogenase (fdh) gene for conversion of fructose to 5-keto-D-fructose and mannitol-2-dehydrogenase (mtlK) gene for conversion to mannitol, a prebiotic. Charles foster rats weighing 150-200 g were fed with 20% fructose in drinking water for two months. Probiotic treatment of EcN (pqq), EcN (pqq-glf-mtlK), EcN (pqq-fdh) was given once per week 109 cells for two months. Furthermore, blood and liver parameters for oxidative stress, dyslipidemia and hyperglycemia were estimated. Fecal samples were collected to determine the production of short chain fatty acids and pyrroloquinoline quinone (PQQ) production. RESULTS: EcN (pqq-glf-mtlK), EcN (pqq-fdh) transformants were confirmed by restriction digestion and functionality was checked by PQQ estimation and HPLC analysis. There was significant increase in body weight, serum glucose, liver injury markers, lipid profile in serum and liver, and decrease in antioxidant enzyme activity in high-fructose-fed rats. However the rats treated with EcN (pqq-glf-mtlK) and EcN (pqq-fdh) showed significant reduction in lipid peroxidation along with increase in serum and hepatic antioxidant enzyme activities. Restoration of liver injury marker enzymes was also seen. Increase in short chain fatty acids (SCFA) demonstrated the prebiotic effects of mannitol and gluconic acid. CONCLUSIONS: Our study demonstrated the effectiveness of probiotic EcN producing PQQ and fructose metabolizing enzymes against the fructose induced hepatic steatosis suggesting that its potential for use in treating fructose induced metabolic syndrome.
[Mh] Termos MeSH primário: Escherichia coli/fisiologia
Frutose/efeitos adversos
Engenharia Genética/métodos
Desidrogenase do Álcool de Açúcar/genética
Simbióticos/administração & dosagem
[Mh] Termos MeSH secundário: Animais
Escherichia coli/genética
Peroxidação de Lipídeos/efeitos dos fármacos
Fígado/metabolismo
Estresse Oxidativo/efeitos dos fármacos
Ratos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
30237-26-4 (Fructose); EC 1.1.- (Sugar Alcohol Dehydrogenases)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170605
[Lr] Data última revisão:
170605
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161021
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0164860



página 1 de 144 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde