Base de dados : MEDLINE
Pesquisa : D08.811.913.050.350.200 [Categoria DeCS]
Referências encontradas : 2286 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 229 ir para página                         

  1 / 2286 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29240830
[Au] Autor:Warfel JD; Vandanmagsar B; Wicks SE; Zhang J; Noland RC; Mynatt RL
[Ad] Endereço:Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States of America.
[Ti] Título:A low fat diet ameliorates pathology but retains beneficial effects associated with CPT1b knockout in skeletal muscle.
[So] Source:PLoS One;12(12):e0188850, 2017.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Inhibiting fatty acid oxidation is one approach to lowering glucose levels in diabetes. Skeletal muscle specific Carnitine Palmitoyltransferase 1b knockout mice (Cpt1bm-/-) comprise a model of impaired fat oxidation; and have decreased fat mass and enhanced glucose disposal and muscle oxidative capacity compared to controls. However, unfavorable effects occur relative to controls when Cpt1bm-/- mice are fed a 25% fat diet, including decreased activity and fat free mass and increased intramuscular lipid and serum myoglobin. In this study we explore if a low fat, high carbohydrate diet can ablate the unfavorable effects while maintaining the favorable phenotype in Cpt1bm-/- mice. Mice were fed either 10% fat (low fat) or 25% fat (chow) diet. Body composition was measured biweekly and indirect calorimetry was performed. Low fat diet abolishes the decreased activity, fat, and fat free mass seen in Cpt1bm-/- mice fed chow diet. Low fat diet also reduces serum myoglobin levels in Cpt1bm-/- mice and diminishes differences in IGF-1 seen between Cpt1bm-/- mice and control mice fed chow diet. Glucose tolerance tests reveal that glucose clearance is improved in Cpt1bm-/- mice relative to controls regardless of diet, and serum analysis shows increased levels of muscle derived FGF21. Electron microscopic analyses and measurements of mRNA transcripts show increased intramuscular lipids, FGF21, mitochondrial and oxidative capacity markers regardless of diet. The favorable metabolic phenotype of Cpt1bm-/- mice therefore remains consistent regardless of diet; and a combination of a low fat diet and pharmacological inhibition of CPT1b may offer remedies to reduce blood glucose.
[Mh] Termos MeSH primário: Carnitina O-Palmitoiltransferase/genética
Dieta com Restrição de Gorduras
Músculo Esquelético/patologia
[Mh] Termos MeSH secundário: Animais
Ingestão de Energia
Ácidos Graxos não Esterificados/metabolismo
Fator de Crescimento Insulin-Like I/metabolismo
Cetonas/metabolismo
Camundongos
Camundongos Knockout
Músculo Esquelético/metabolismo
Mioglobina/metabolismo
Ganho de Peso
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Fatty Acids, Nonesterified); 0 (Ketones); 0 (Myoglobin); 67763-96-6 (Insulin-Like Growth Factor I); EC 2.3.1.21 (CPT1B protein, mouse); EC 2.3.1.21 (Carnitine O-Palmitoyltransferase)
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180227
[Lr] Data última revisão:
180227
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171215
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0188850


  2 / 2286 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29287726
[Au] Autor:Kim Y; Yang H; Min JK; Park YJ; Jeong SH; Jang SW; Shim S
[Ad] Endereço:Department of Biochemistry, Chungbuk National University, Cheongju, Republic of Korea.
[Ti] Título:CCN3 secretion is regulated by palmitoylation via ZDHHC22.
[So] Source:Biochem Biophys Res Commun;495(4):2573-2578, 2018 01 22.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Normal extracellular secretion of nephroblastoma overexpressed (NOV, also known as CCN3) is important for the adhesion, migration, and differentiation of cells. In previous studies, we have shown that the intracellular accumulation of CCN3 inhibits the growth of prominent neurons. Increased intracellular CCN3 can be induced through various processes, such as transcription, detoxification, and posttranslational modification. In general, posttranslational modifications are very important for protein secretion. However, it is unclear whether posttranslational modification is necessary for CCN3 secretion. In this study, we have conducted mutational analysis of CCN3 to demonstrate that its thrombospondin type-1 (TSP1) domain is important for CCN3 secretion and intracellular function. Point mutation analysis confirmed that CCN3 secretion was inhibited by cysteine (C)241 mutation, and overexpression of CCN3-C241A inhibited neuronal axonal growth in vivo. Furthermore, we demonstrated that palmitoylation is important for the extracellular secretion of CCN3 and that zinc finger DHHC-type containing 22 (ZDHHC22), a palmityoltransferase, can interact with CCN3. Taken together, our results suggest that palmitoylation by ZDHHC22 at C241 in the CCN3 TSP1 domain may be required for the secretion of CCN3. Aberrant palmitoylation induces intracellular accumulation of CCN3, inhibiting neuronal axon growth.
[Mh] Termos MeSH primário: Carnitina O-Palmitoiltransferase/química
Carnitina O-Palmitoiltransferase/metabolismo
Lipoilação/fisiologia
Proteínas de Membrana/química
Proteínas de Membrana/metabolismo
Proteína Sobre-Expressa em Nefroblastoma/química
Proteína Sobre-Expressa em Nefroblastoma/metabolismo
Neurônios/metabolismo
[Mh] Termos MeSH secundário: Animais
Sítios de Ligação
Células HEK293
Seres Humanos
Camundongos
Camundongos Endogâmicos ICR
Neurônios/química
Neurônios/citologia
Ligação Proteica
Relação Estrutura-Atividade
[Pt] Tipo de publicação:JOURNAL ARTICLE; PATIENT EDUCATION HANDOUT; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Membrane Proteins); 0 (NOV protein, human); 0 (Nephroblastoma Overexpressed Protein); EC 2.3.1.- (ZDHHC22 protein, human); EC 2.3.1.21 (Carnitine O-Palmitoyltransferase)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180222
[Lr] Data última revisão:
180222
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171231
[St] Status:MEDLINE


  3 / 2286 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29317208
[Au] Autor:Xiao XH; Qi XY; Wang YD; Ran L; Yang J; Zhang HL; Xu CX; Wen GB; Liu JH
[Ad] Endereço:Department of Metabolism and Endocrinology, University of South China, Hengyang, 421001, Hunan Province, China.
[Ti] Título:Zinc alpha2 glycoprotein promotes browning in adipocytes.
[So] Source:Biochem Biophys Res Commun;496(2):287-293, 2018 02 05.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Recent studies have highlighted recruiting and activating brite adipocytes in WAT (so-called "browning") would be an attractive anti-obesity strategy. Zinc alpha2 glycoprotein (ZAG) as an important adipokine, is reported to ameliorate glycolipid metabolism and lose body weight in obese mice. However whether the body reducing effect mediated by browning programme remains unclear. Here, we show that overexpression of ZAG in 3T3-L1 adipocytes enhanced expression of brown fat-specific markers (UCP-1, PRDM16 and CIDEA), mitochondrial biogenesis genes (PGC-1α, NRF-1/2 and mtTFA) and the key lipid metabolism lipases (ATGL, HSL, CPT1-A and p-acyl-CoA carboxylase). Additionally, those effects were dramaticlly abolished by H89/SB203580, revealing ZAG-induced browning depend on PKA and p38 MAPK signaling. Overall, our findings suggest that ZAG is a candidate therapeutic agent against obesity via induction of brown fat-like phenotype in white adipocytes.
[Mh] Termos MeSH primário: Adipócitos Marrons/metabolismo
Proteínas de Transporte/genética
Regulação da Expressão Gênica
Glicoproteínas/genética
Metabolismo dos Lipídeos/genética
[Mh] Termos MeSH secundário: Células 3T3-L1
Adipócitos Marrons/citologia
Adipócitos Marrons/efeitos dos fármacos
Animais
Proteínas Reguladoras de Apoptose/genética
Proteínas Reguladoras de Apoptose/metabolismo
Carbono-Carbono Ligases/genética
Carbono-Carbono Ligases/metabolismo
Carnitina O-Palmitoiltransferase/genética
Carnitina O-Palmitoiltransferase/metabolismo
Proteínas de Transporte/metabolismo
Proteínas Quinases Dependentes de AMP Cíclico/genética
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
Proteínas de Ligação a DNA/genética
Proteínas de Ligação a DNA/metabolismo
Glicoproteínas/metabolismo
Imidazóis/farmacologia
Isoquinolinas/farmacologia
Lipase/genética
Lipase/metabolismo
Camundongos
Fator 2 Relacionado a NF-E2/genética
Fator 2 Relacionado a NF-E2/metabolismo
Fator 1 Nuclear Respiratório/genética
Fator 1 Nuclear Respiratório/metabolismo
Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
Piridinas/farmacologia
Transdução de Sinais
Sulfonamidas/farmacologia
Fatores de Transcrição/genética
Fatores de Transcrição/metabolismo
Proteína Desacopladora 1/genética
Proteína Desacopladora 1/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (AZGP1 protein, mouse); 0 (Apoptosis Regulatory Proteins); 0 (Carrier Proteins); 0 (Cidea protein, mouse); 0 (DNA-Binding Proteins); 0 (Glycoproteins); 0 (Imidazoles); 0 (Isoquinolines); 0 (NF-E2-Related Factor 2); 0 (Nfe2l2 protein, mouse); 0 (Nrf1 protein, mouse); 0 (Nuclear Respiratory Factor 1); 0 (Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha); 0 (Ppargc1a protein, mouse); 0 (Prdm16 protein, mouse); 0 (Pyridines); 0 (Sulfonamides); 0 (Transcription Factors); 0 (Ucp1 protein, mouse); 0 (Uncoupling Protein 1); EC 2.3.1.21 (CPT1B protein, mouse); EC 2.3.1.21 (Carnitine O-Palmitoyltransferase); EC 2.7.11.11 (Cyclic AMP-Dependent Protein Kinases); EC 3.1.1.3 (Lipase); EC 3.1.1.3 (PNPLA2 protein, mouse); EC 6.4.- (Carbon-Carbon Ligases); EC 6.4.1.- (acyl-CoA carboxylase); M876330O56 (N-(2-(4-bromocinnamylamino)ethyl)-5-isoquinolinesulfonamide); OU13V1EYWQ (SB 203580)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180214
[Lr] Data última revisão:
180214
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180111
[St] Status:MEDLINE


  4 / 2286 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29173234
[Au] Autor:López-Oliva ME; Garcimartin A; Muñoz-Martínez E
[Ad] Endereço:1Sección Departamental de Fisiología, Facultad de Farmacia,Universidad Complutense de Madrid,28040 Madrid,Spain.
[Ti] Título:Dietary α-lactalbumin induced fatty liver by enhancing nuclear liver X receptor αß/sterol regulatory element-binding protein-1c/PPARγ expression and minimising PPARα/carnitine palmitoyltransferase-1 expression and AMP-activated protein kinase α phosphorylation associated with atherogenic dyslipidaemia, insulin resistance and oxidative stress in Balb/c mice.
[So] Source:Br J Nutr;118(11):914-929, 2017 Dec.
[Is] ISSN:1475-2662
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The effect and the role played by dietary α-lactalbumin (α-LAC) on hepatic fat metabolism are yet to be fully elucidated. We reported previously that α-LAC intake induced atherogenic dyslipidaemia in Balb/c mice. The aim of the present study was to investigate if this atherogenic effect could be due to a possible α-LAC-induced hepatic steatosis. We examine the ability of dietary α-LAC to induce liver steatosis, identifying the molecular mechanisms underlying hepatic lipid metabolism in association with the lipid profile, peripheral insulin resistance (IR) and changes in the hepatic oxidative environment. Male Balb/c mice (n 6) were fed with diets containing either chow or 14 % α-LAC for 4 weeks. The α-LAC-fed mice developed abdominal adiposity and IR. Moderate liver steatosis with increased TAG and NEFA contents was correlated with atherogenic dyslipidaemia. There was increased nuclear expression of liver X receptor αß (LXRαß), sterol regulatory element-binding protein-1c (SREBP-1c) and PPARγ transcription factors and of the cytosolic enzymes acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase involved in the hepatic de novo lipogenesis. The opposite was found for the nuclear receptor PPARα and the mitochondrial enzyme carnitine palmitoyltransferase-1 (CPT-1), leading to reduced fatty acid ß-oxidation (FAO). These changes were associated with a significant decrease in both p-Thr172-AMP-activated protein kinase α (AMPKα) (inactivation) and p-Ser79-ACC1 (activation) and with a more oxidative liver environment increasing lipid peroxidation and protein oxidation and reducing GSH:GSSG ratio in the α-LAC-fed mice. In conclusion, 4 weeks of 14 % α-LAC feeding induced liver steatosis associated with atherogenic dyslipidaemia, IR and oxidative stress by enhancing nuclear LXRαß/SREBP-1c/PPARγ expression and diminishing PPARα/CPT-1 expression and AMPKα phosphorylation shifting the hepatic FAO toward fatty acid synthesis in Balb/c mice.
[Mh] Termos MeSH primário: Carnitina O-Palmitoiltransferase/metabolismo
Fígado Gorduroso/metabolismo
Receptores X do Fígado/metabolismo
PPAR alfa/metabolismo
PPAR gama/metabolismo
Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
[Mh] Termos MeSH secundário: Proteínas Quinases Ativadas por AMP/genética
Proteínas Quinases Ativadas por AMP/metabolismo
Acetil-CoA Carboxilase/genética
Acetil-CoA Carboxilase/metabolismo
Animais
Aterosclerose/diagnóstico
Aterosclerose/etiologia
Aterosclerose/genética
Carnitina O-Palmitoiltransferase/genética
Dislipidemias/diagnóstico
Dislipidemias/etiologia
Dislipidemias/genética
Fígado Gorduroso/induzido quimicamente
Fígado Gorduroso/genética
Resistência à Insulina
Lactalbumina/efeitos adversos
Peroxidação de Lipídeos/efeitos dos fármacos
Fígado/efeitos dos fármacos
Fígado/metabolismo
Receptores X do Fígado/genética
Masculino
Camundongos
Camundongos Endogâmicos BALB C
Estresse Oxidativo
PPAR alfa/genética
PPAR gama/genética
Fosforilação
Proteína de Ligação a Elemento Regulador de Esterol 1/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Liver X Receptors); 0 (PPAR alpha); 0 (PPAR gamma); 0 (Srebf1 protein, mouse); 0 (Sterol Regulatory Element Binding Protein 1); 9013-90-5 (Lactalbumin); EC 2.3.1.21 (CPT1B protein, mouse); EC 2.3.1.21 (Carnitine O-Palmitoyltransferase); EC 2.7.11.31 (AMP-Activated Protein Kinases); EC 6.4.1.2 (ACC1 protein, mouse); EC 6.4.1.2 (Acetyl-CoA Carboxylase)
[Em] Mês de entrada:1712
[Cu] Atualização por classe:171218
[Lr] Data última revisão:
171218
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171128
[St] Status:MEDLINE
[do] DOI:10.1017/S000711451700232X


  5 / 2286 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28980889
[Au] Autor:Tian JJ; Lei CX; Ji H; Kaneko G; Zhou JS; Yu HB; Li Y; Yu EM; Xie J
[Ad] Endereço:1College of Animal Science and Technology,Northwest A&F University,Yangling 712100,People's Republic of China.
[Ti] Título:Comparative analysis of effects of dietary arachidonic acid and EPA on growth, tissue fatty acid composition, antioxidant response and lipid metabolism in juvenile grass carp, Ctenopharyngodon idellus.
[So] Source:Br J Nutr;118(6):411-422, 2017 Sep.
[Is] ISSN:1475-2662
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Four isonitrogenous and isoenergetic purified diets containing free arachidonic acid (ARA) or EPA (control group), 0·30 % ARA, 0·30 % EPA and 0·30 % ARA+EPA (equivalent) were designed to feed juvenile grass carp (10·21 (sd 0·10) g) for 10 weeks. Only the EPA group presented better growth performance compared with the control group (P<0·05). Dietary ARA and EPA were incorporated into polar lipids more than non-polar lipids in hepatopancreas but not intraperitoneal fat (IPF) tissue. Fish fed ARA and EPA showed an increase of serum superoxide dismutase and catalase activities, and decrease of glutathione peroxidase activity and malondialdehyde contents (P<0·05). The hepatopancreatic TAG levels decreased both in ARA and EPA groups (P<0·05), accompanied by the decrease of lipoprotein lipase (LPL) activity in the ARA group (P<0·05). Fatty acid synthase (FAS), diacylglycerol O-acyltransferase and apoE gene expression in the hepatopancreas decreased in fish fed ARA and EPA, but only the ARA group exhibited increased mRNA level of adipose TAG lipase (ATGL) (P<0·05). Decreased IPF index and adipocyte sizes were found in the ARA group (P<0·05). Meanwhile, the ARA group showed decreased expression levels of adipogenic genes CCAAT enhancer-binding protein α, LPL and FAS, and increased levels of the lipid catabolic genes PPAR α, ATGL, hormone-sensitive lipase and carnitine palmitoyltransferase 1 (CPT-1) in IPF, whereas the EPA group only increased PPAR α and CPT-1 mRNA expression and showed less levels than the ARA group. Overall, dietary EPA is beneficial to the growth performance, whereas ARA is more potent in inducing lipolysis and inhibiting adipogenesis, especially in IPF. Meanwhile, dietary ARA and EPA showed the similar preference in esterification and the improvement in antioxidant response.
[Mh] Termos MeSH primário: Antioxidantes/metabolismo
Ácido Araquidônico/administração & dosagem
Composição Corporal
Carpas/fisiologia
Ácido Eicosapentaenoico/administração & dosagem
Metabolismo dos Lipídeos
[Mh] Termos MeSH secundário: Adipócitos/efeitos dos fármacos
Adipócitos/metabolismo
Adipogenia/efeitos dos fármacos
Adipogenia/genética
Ração Animal/análise
Animais
Proteína alfa Estimuladora de Ligação a CCAAT/genética
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo
Carnitina O-Palmitoiltransferase/genética
Carnitina O-Palmitoiltransferase/metabolismo
Dieta/veterinária
Glutationa Peroxidase/sangue
Hepatopâncreas/efeitos dos fármacos
Hepatopâncreas/metabolismo
Lipase Lipoproteica/sangue
Malondialdeído/sangue
RNA Mensageiro/genética
RNA Mensageiro/metabolismo
Superóxido Dismutase/sangue
[Pt] Tipo de publicação:COMPARATIVE STUDY; JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Antioxidants); 0 (CCAAT-Enhancer-Binding Protein-alpha); 0 (RNA, Messenger); 27YG812J1I (Arachidonic Acid); 4Y8F71G49Q (Malondialdehyde); AAN7QOV9EA (Eicosapentaenoic Acid); EC 1.11.1.9 (Glutathione Peroxidase); EC 1.15.1.1 (Superoxide Dismutase); EC 2.3.1.21 (Carnitine O-Palmitoyltransferase); EC 3.1.1.34 (Lipoprotein Lipase)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171011
[Lr] Data última revisão:
171011
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171006
[St] Status:MEDLINE
[do] DOI:10.1017/S000711451700215X


  6 / 2286 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28946929
[Au] Autor:Chen GH; Hogstrand C; Luo Z; Zhang DG; Ling SC; Wu K
[Ad] Endereço:1Key Laboratory of Freshwater Animal Breeding,Ministry of Agriculture of P.R.C.,Fishery College,Huazhong Agricultural University,Wuhan 430070,People's Republic of China.
[Ti] Título:Dietary zinc addition influenced zinc and lipid deposition in the fore- and mid-intestine of juvenile yellow catfish Pelteobagrus fulvidraco.
[So] Source:Br J Nutr;118(8):570-579, 2017 Oct.
[Is] ISSN:1475-2662
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The present study explored the mechanisms of dietary Zn influencing Zn and lipid deposition in the fore- and mid- intestine in yellow catfish Pelteobagrus fulvidraco, and investigated whether the mechanism was intestinal-region dependent. For this purpose, yellow catfish were fed three diets containing Zn levels of 8·83, 19·20 and 146·65 mg Zn/kg, respectively. Growth performance, intestinal TAG and Zn contents as well as activities and mRNA expression of enzymes and genes involved in Zn transport and lipid metabolism in the fore- and mid-intestine were analysed. Dietary Zn increased Zn accumulation as well as activities of Cu-, Zn-superoxide dismutase and ATPase in the fore- and mid-intestine. In the fore-intestine, dietary Zn up-regulated mRNA levels of ZnT1, ZnT5, ZnT7, metallothionein (MT) and metal response element-binding transcription factor-1 (MTF-1), but down-regulated mRNA levels of ZIP4 and ZIP5. In the mid-intestine, dietary Zn up-regulated mRNA levels of ZnT1, ZnT5, ZnT7, MT and MTF-1, but down-regulated mRNA levels of ZIP4 and ZIP5. Dietary Zn reduced TAG content, down-regulated activities of 6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME) and fatty acid synthase (FAS) activities, and reduced mRNA levels of 6PGD, G6PD, FAS, PPARγ and sterol-regulator element-binding protein (SREBP-1), but up-regulated mRNA levels of carnitine palmitoyltransferase IA, hormone-sensitive lipase (HSLa), adipose TAG lipase (ATGL) and PPARα in the fore-intestine. In the mid-intestine, dietary Zn reduced TAG content, activities of G6PD, ME, isocitrate dehydrogenase and FAS, down-regulated mRNA levels of 6PGD, G6PD, FAS, acetyl-CoA carboxylase a, PPARγ and SREBP-1, but up-regulated mRNA expression of HSLa, ATGL and PPARγ. The reduction in TAG content following Zn addition was attributable to reduced lipogenesis and increased lipolysis, and similar regulatory mechanisms were observed between the fore- and mid-intestine.
[Mh] Termos MeSH primário: Peixes-Gato/metabolismo
Intestinos/efeitos dos fármacos
Metabolismo dos Lipídeos/efeitos dos fármacos
Zinco/administração & dosagem
[Mh] Termos MeSH secundário: Acetil-CoA Carboxilase/genética
Acetil-CoA Carboxilase/metabolismo
Ração Animal/análise
Animais
Carnitina O-Palmitoiltransferase/genética
Carnitina O-Palmitoiltransferase/metabolismo
Dieta/veterinária
Regulação para Baixo
Regulação da Expressão Gênica
Glucosefosfato Desidrogenase/genética
Glucosefosfato Desidrogenase/metabolismo
Intestinos/metabolismo
Malato Desidrogenase/genética
Malato Desidrogenase/metabolismo
PPAR alfa/genética
PPAR alfa/metabolismo
PPAR gama/genética
PPAR gama/metabolismo
RNA Mensageiro/genética
RNA Mensageiro/metabolismo
Esterol Esterase/genética
Esterol Esterase/metabolismo
Proteína de Ligação a Elemento Regulador de Esterol 1/genética
Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
Superóxido Dismutase/genética
Superóxido Dismutase/metabolismo
Regulação para Cima
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (PPAR alpha); 0 (PPAR gamma); 0 (RNA, Messenger); 0 (Sterol Regulatory Element Binding Protein 1); EC 1.1.1.37 (Malate Dehydrogenase); EC 1.1.1.39 (malate dehydrogenase (decarboxylating)); EC 1.1.1.49 (Glucosephosphate Dehydrogenase); EC 1.15.1.1 (Superoxide Dismutase); EC 2.3.1.21 (Carnitine O-Palmitoyltransferase); EC 3.1.1.13 (Sterol Esterase); EC 6.4.1.2 (Acetyl-CoA Carboxylase); J41CSQ7QDS (Zinc)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171030
[Lr] Data última revisão:
171030
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170927
[St] Status:MEDLINE
[do] DOI:10.1017/S0007114517002446


  7 / 2286 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28919076
[Au] Autor:Klein Geltink RI; O'Sullivan D; Corrado M; Bremser A; Buck MD; Buescher JM; Firat E; Zhu X; Niedermann G; Caputa G; Kelly B; Warthorst U; Rensing-Ehl A; Kyle RL; Vandersarren L; Curtis JD; Patterson AE; Lawless S; Grzes K; Qiu J; Sanin DE; Kretz O; Huber TB; Janssens S; Lambrecht BN; Rambold AS; Pearce EJ; Pearce EL
[Ad] Endereço:Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
[Ti] Título:Mitochondrial Priming by CD28.
[So] Source:Cell;171(2):385-397.e11, 2017 Oct 05.
[Is] ISSN:1097-4172
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:T cell receptor (TCR) signaling without CD28 can elicit primary effector T cells, but memory T cells generated during this process are anergic, failing to respond to secondary antigen exposure. We show that, upon T cell activation, CD28 transiently promotes expression of carnitine palmitoyltransferase 1a (Cpt1a), an enzyme that facilitates mitochondrial fatty acid oxidation (FAO), before the first cell division, coinciding with mitochondrial elongation and enhanced spare respiratory capacity (SRC). microRNA-33 (miR33), a target of thioredoxin-interacting protein (TXNIP), attenuates Cpt1a expression in the absence of CD28, resulting in cells that thereafter are metabolically compromised during reactivation or periods of increased bioenergetic demand. Early CD28-dependent mitochondrial engagement is needed for T cells to remodel cristae, develop SRC, and rapidly produce cytokines upon restimulation-cardinal features of protective memory T cells. Our data show that initial CD28 signals during T cell activation prime mitochondria with latent metabolic capacity that is essential for future T cell responses.
[Mh] Termos MeSH primário: Antígenos CD28/metabolismo
Ativação Linfocitária
Mitocôndrias/metabolismo
Linfócitos T/citologia
Linfócitos T/imunologia
[Mh] Termos MeSH secundário: Animais
Carnitina O-Palmitoiltransferase
Inibidores Enzimáticos/farmacologia
Compostos de Epóxi/farmacologia
Seres Humanos
Interleucina-15/imunologia
Camundongos
Camundongos Endogâmicos C57BL
Receptores de Antígenos de Linfócitos T/metabolismo
Estresse Fisiológico
Linfócitos T/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (CD28 Antigens); 0 (Enzyme Inhibitors); 0 (Epoxy Compounds); 0 (Interleukin-15); 0 (Receptors, Antigen, T-Cell); EC 2.3.1.21 (CPT1B protein, mouse); EC 2.3.1.21 (Carnitine O-Palmitoyltransferase); EC 2.3.1.21 (carnitine palmitoyltransferase 1A, human); MSB3DD2XP6 (etomoxir)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171116
[Lr] Data última revisão:
171116
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170919
[St] Status:MEDLINE


  8 / 2286 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28718939
[Au] Autor:Nalecz KA
[Ad] Endereço:Laboratory of Transport through Biomembranes, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
[Ti] Título:Is fat tasty for the brain?: An Editorial Comment for 'Developmental regulation and localization of Carnitine Palmitoyltransferases (CPTs) in rat brain'.
[So] Source:J Neurochem;142(3):347-349, 2017 Aug.
[Is] ISSN:1471-4159
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Read the commented article 'Developmental regulation and localization of Carnitine Palmitoyltransferases (CPTs) in rat brain' on page 407.
[Mh] Termos MeSH primário: Encéfalo/metabolismo
Carnitina O-Palmitoiltransferase/metabolismo
Ácidos Graxos/metabolismo
[Mh] Termos MeSH secundário: Animais
[Pt] Tipo de publicação:EDITORIAL
[Nm] Nome de substância:
0 (Fatty Acids); EC 2.3.1.21 (Carnitine O-Palmitoyltransferase)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170921
[Lr] Data última revisão:
170921
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170719
[St] Status:MEDLINE
[do] DOI:10.1111/jnc.14013


  9 / 2286 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28682459
[Au] Autor:Khabbush A; Orford M; Tsai YC; Rutherford T; O'Donnell M; Eaton S; Heales SJR
[Ad] Endereço:Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.
[Ti] Título:Neuronal decanoic acid oxidation is markedly lower than that of octanoic acid: A mechanistic insight into the medium-chain triglyceride ketogenic diet.
[So] Source:Epilepsia;58(8):1423-1429, 2017 Aug.
[Is] ISSN:1528-1167
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:OBJECTIVE: The medium-chain triglyceride (MCT) ketogenic diet contains both octanoic (C8) and decanoic (C10) acids. The diet is an effective treatment for pharmacoresistant epilepsy. Although the exact mechanism for its efficacy is not known, it is emerging that C10, but not C8, interacts with targets that can explain antiseizure effects, for example, peroxisome proliferator-activated receptor-γ (eliciting mitochondrial biogenesis and increased antioxidant status) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. For such effects to occur, significant concentrations of C10 are likely to be required in the brain. METHODS: To investigate how this might occur, we measured the ß-oxidation rate of C-labeled C8 and C10 in neuronal SH-SY5Y cells using isotope-ratio mass spectrometry. The effects of carnitine palmitoyltransferase I (CPT1) inhibition, with the CPT1 inhibitor etomoxir, on C8 and C10 ß-oxidation were also investigated. RESULTS: Both fatty acids were catabolized, as judged by CO release. However, C10 was ß-oxidized at a significantly lower rate, 20% that of C8. This difference was explained by a clear dependence of C10 on CPT1 activity, which is low in neurons, whereas 66% of C8 ß-oxidation was independent of CPT1. In addition, C10 ß-oxidation was decreased further in the presence of C8. SIGNIFICANCE: It is concluded that, because CPT1 is poorly expressed in the brain, C10 is relatively spared from ß-oxidation and can accumulate. This is further facilitated by the presence of C8 in the MCT ketogenic diet, which has a sparing effect upon C10 ß-oxidation.
[Mh] Termos MeSH primário: Caprilatos/metabolismo
Dieta Cetogênica
[Mh] Termos MeSH secundário: Caprilatos/farmacologia
Isótopos de Carbono/metabolismo
Carnitina O-Palmitoiltransferase/metabolismo
Linhagem Celular Tumoral
Sobrevivência Celular/efeitos dos fármacos
Ácidos Decanoicos/metabolismo
Ácidos Decanoicos/farmacologia
Glucose/metabolismo
Seres Humanos
Neuroblastoma/patologia
Oxirredução/efeitos dos fármacos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Caprylates); 0 (Carbon Isotopes); 0 (Decanoic Acids); 4G9EDB6V73 (decanoic acid); EC 2.3.1.21 (Carnitine O-Palmitoyltransferase); IY9XDZ35W2 (Glucose); OBL58JN025 (octanoic acid)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:171116
[Lr] Data última revisão:
171116
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170707
[St] Status:MEDLINE
[do] DOI:10.1111/epi.13833


  10 / 2286 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28671672
[Au] Autor:Valentino A; Calarco A; Di Salle A; Finicelli M; Crispi S; Calogero RA; Riccardo F; Sciarra A; Gentilucci A; Galderisi U; Margarucci S; Peluso G
[Ad] Endereço:Institute of Agro-environmental and Forest Biology, National Research Council, IBAF - CNR, Naples, Italy.
[Ti] Título:Deregulation of MicroRNAs mediated control of carnitine cycle in prostate cancer: molecular basis and pathophysiological consequences.
[So] Source:Oncogene;36(43):6030-6040, 2017 Oct 26.
[Is] ISSN:1476-5594
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Cancer cells reprogram their metabolism to maintain both viability and uncontrolled proliferation. Although an interplay between the genetic, epigenetic and metabolic rewiring in cancer is beginning to emerge, it remains unclear how this metabolic plasticity occurs. Here, we report that in prostate cancer cells (PCCs) microRNAs (miRNAs) greatly contribute to deregulation of mitochondrial fatty acid (FA) oxidation via carnitine system modulation. We provide evidence that the downregulation of hsa-miR-124-3p, hsa-miR-129-5p and hsa-miR-378 induced an increase in both expression and activity of CPT1A, CACT and CrAT in malignant prostate cells. Moreover, the analysis of human prostate cancer and prostate control specimens confirmed the aberrant expression of miR-124-3p, miR-129-5p and miR-378 in primary tumors. Forced expression of the miRNAs mentioned above affected tumorigenic properties, such as proliferation, migration and invasion, in PC3 and LNCaP cells regardless of their hormone sensitivity. CPT1A, CACT and CrAT overexpression allow PCCs to be more prone on FA utilization than normal prostate cells, also in the presence of high pyruvate concentration. Finally, the simultaneous increase of CPT1A, CACT and CrAT is fundamental for PCCs to sustain FA oxidation in the presence of heavy lipid load on prostate cancer mitochondria. Indeed, the downregulation of only one of these proteins reduces PCCs metabolic flexibility with the accumulation of FA-intermediate metabolites in the mitochondria. Together, our data implicate carnitine cycle as a primary regulator of adaptive metabolic reprogramming in PCCs and suggest new potential druggable pathways for prevention and treatment of prostate cancer.
[Mh] Termos MeSH primário: Carnitina O-Palmitoiltransferase/genética
Proteínas de Membrana Transportadoras/genética
MicroRNAs/genética
Neoplasias da Próstata/genética
[Mh] Termos MeSH secundário: Carcinogênese/genética
Carnitina/metabolismo
Linhagem Celular Tumoral
Proliferação Celular/genética
Ácidos Graxos/genética
Ácidos Graxos/metabolismo
Regulação Neoplásica da Expressão Gênica
Seres Humanos
Masculino
Oxirredução
Neoplasias da Próstata/metabolismo
Neoplasias da Próstata/patologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Fatty Acids); 0 (MIRN124 microRNA, human); 0 (MIRN378 microRNA, human); 0 (Membrane Transport Proteins); 0 (MicroRNAs); 0 (Mirn129 microRNA, human); EC 2.3.1. (SLC25A20 protein, human); EC 2.3.1.21 (Carnitine O-Palmitoyltransferase); EC 2.3.1.21 (carnitine palmitoyltransferase 1A, human); S7UI8SM58A (Carnitine)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171102
[Lr] Data última revisão:
171102
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170704
[St] Status:MEDLINE
[do] DOI:10.1038/onc.2017.216



página 1 de 229 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde