Base de dados : MEDLINE
Pesquisa : D08.811.913.050.618 [Categoria DeCS]
Referências encontradas : 339 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 34 ir para página                         

  1 / 339 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28985053
[Au] Autor:McVey AC; Medarametla P; Chee X; Bartlett S; Poso A; Spring DR; Rahman T; Welch M
[Ad] Endereço:Department of Biochemistry, University of Cambridge , Cambridge CB2 1QW, U.K.
[Ti] Título:Structural and Functional Characterization of Malate Synthase G from Opportunistic Pathogen Pseudomonas aeruginosa.
[So] Source:Biochemistry;56(41):5539-5549, 2017 Oct 17.
[Is] ISSN:1520-4995
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Pseudomonas aeruginosa is an opportunistic human pathogen recognized as a critical threat by the World Health Organization because of the dwindling number of effective therapies available to treat infections. Over the past decade, it has become apparent that the glyoxylate shunt plays a vital role in sustaining P. aeruginosa during infection scenarios. The glyoxylate shunt comprises two enzymes: isocitrate lyase and malate synthase isoform G. Inactivation of these enzymes has been reported to abolish the ability of P. aeruginosa to establish infection in a mammalian model system, yet we still lack the structural information to support drug design efforts. In this work, we describe the first X-ray crystal structure of P. aeruginosa malate synthase G in the apo form at 1.62 Å resolution. The enzyme is a monomer composed of four domains and is highly conserved with homologues found in other clinically relevant microorganisms. It is also dependent on Mg for catalysis. Metal ion binding led to a change in the intrinsic fluorescence of the protein, allowing us to quantitate its affinity for Mg . We also identified putative drug binding sites in malate synthase G using computational analysis and, because of the high resolution of the experimental data, were further able to characterize its hydration properties. Our data reveal two promising binding pockets in malate synthase G that may be exploited for drug design.
[Mh] Termos MeSH primário: Proteínas de Bactérias/metabolismo
Malato Sintase/metabolismo
Modelos Moleculares
Pseudomonas aeruginosa/enzimologia
[Mh] Termos MeSH secundário: Acetilcoenzima A/química
Acetilcoenzima A/metabolismo
Sequência de Aminoácidos
Apoenzimas/química
Apoenzimas/genética
Apoenzimas/metabolismo
Proteínas de Bactérias/química
Proteínas de Bactérias/genética
Sítios de Ligação
Domínio Catalítico
Biologia Computacional
Sequência Conservada
Cristalografia por Raios X
Sistemas Especialistas
Glioxilatos/química
Glioxilatos/metabolismo
Indóis/química
Indóis/metabolismo
Ligantes
Magnésio/química
Magnésio/metabolismo
Malato Sintase/química
Malato Sintase/genética
Simulação de Acoplamento Molecular
Estrutura Molecular
Conformação Proteica
Estrutura Secundária de Proteína
Proteínas Recombinantes/química
Proteínas Recombinantes/metabolismo
Alinhamento de Sequência
Homologia Estrutural de Proteína
[Pt] Tipo de publicação:COMPARATIVE STUDY; JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Apoenzymes); 0 (Bacterial Proteins); 0 (Glyoxylates); 0 (Indoles); 0 (Ligands); 0 (Recombinant Proteins); 59711R38B0 (indole-3-carboxylic acid); 72-89-9 (Acetyl Coenzyme A); EC 2.3.3.9 (Malate Synthase); I38ZP9992A (Magnesium); JQ39C92HH6 (glyoxylic acid)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171116
[Lr] Data última revisão:
171116
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171007
[St] Status:MEDLINE
[do] DOI:10.1021/acs.biochem.7b00852


  2 / 339 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28516845
[Au] Autor:Gründel M; Knoop H; Steuer R
[Ad] Endereço:2​Fachinstitut Theoretische Biologie (ITB), Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany 1​Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestr. 117, 10115 Berlin, Germany.
[Ti] Título:Activity and functional properties of the isocitrate lyase in the cyanobacterium Cyanothece sp. PCC 7424.
[So] Source:Microbiology;163(5):731-744, 2017 May.
[Is] ISSN:1465-2080
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Cyanobacteria are ubiquitous photoautotrophs that assimilate atmospheric CO2 as their main source of carbon. Several cyanobacteria are known to be facultative heterotrophs that are able to grow on diverse carbon sources. For selected strains, assimilation of organic acids and mixotrophic growth on acetate has been reported for decades. However, evidence for the existence of a functional glyoxylate shunt in cyanobacteria has long been contradictory and unclear. Genes coding for isocitrate lyase (ICL) and malate synthase were recently identified in two strains of the genus Cyanothece, and the existence of the complete glyoxylate shunt was verified in a strain of Chlorogloeopsis fritschii. Here, we report that the gene PCC7424_4054 of the strain Cyanothece sp. PCC 7424 encodes an enzymatically active protein that catalyses the reaction of ICL, an enzyme that is specific for the glyoxylate shunt. We demonstrate that ICL activity is induced under alternating day/night cycles and acetate-supplemented cultures exhibit enhanced growth. In contrast, growth under constant light did not result in any detectable ICL activity or enhanced growth of acetate-supplemented cultures. Furthermore, our results indicate that, despite the presence of a glyoxylate shunt, acetate does not support continued heterotrophic growth and cell proliferation. The functional validation of the ICL is supplemented with a bioinformatics analysis of enzymes that co-occur with the glyoxylate shunt. We hypothesize that the glyoxylate shunt in Cyanothece sp. PCC 7424, and possibly other nitrogen-fixing cyanobacteria, is an adaptation to a specific ecological niche and supports assimilation of nitrogen or organic compounds during the night phase.
[Mh] Termos MeSH primário: Acetatos/metabolismo
Cyanothece/enzimologia
Cyanothece/crescimento & desenvolvimento
Glioxilatos/metabolismo
Processos Heterotróficos/genética
Isocitrato Liase/genética
[Mh] Termos MeSH secundário: Proliferação Celular/fisiologia
Cyanothece/genética
Cyanothece/metabolismo
Malato Sintase/genética
Fotoperíodo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Acetates); 0 (Glyoxylates); EC 2.3.3.9 (Malate Synthase); EC 4.1.3.1 (Isocitrate Lyase); JQ39C92HH6 (glyoxylic acid)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171102
[Lr] Data última revisão:
171102
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170519
[St] Status:MEDLINE
[do] DOI:10.1099/mic.0.000459


  3 / 339 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27920298
[Au] Autor:Borjian F; Han J; Hou J; Xiang H; Zarzycki J; Berg IA
[Ad] Endereço:Mikrobiologie, Fakultät Biologie, Universität Freiburg, Freiburg, Germany.
[Ti] Título:Malate Synthase and ß-Methylmalyl Coenzyme A Lyase Reactions in the Methylaspartate Cycle in Haloarcula hispanica.
[So] Source:J Bacteriol;199(4), 2017 Feb 15.
[Is] ISSN:1098-5530
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Haloarchaea are extremely halophilic heterotrophic microorganisms belonging to the class Halobacteria (Euryarchaeota). Almost half of the haloarchaea possesses the genes coding for enzymes of the methylaspartate cycle, a recently discovered anaplerotic acetate assimilation pathway. In this cycle, the enzymes of the tricarboxylic acid cycle together with the dedicated enzymes of the methylaspartate cycle convert two acetyl coenzyme A (acetyl-CoA) molecules to malate. The methylaspartate cycle involves two reactions catalyzed by homologous enzymes belonging to the CitE-like enzyme superfamily, malyl-CoA lyase/thioesterase (haloarchaeal malate synthase [hMS]; Hah_2476 in Haloarcula hispanica) and ß-methylmalyl-CoA lyase (haloarchaeal ß-methylmalyl-CoA lyase [hMCL]; Hah_1341). Although both enzymes catalyze the same reactions, hMS was previously proposed to preferentially catalyze the formation of malate from acetyl-CoA and glyoxylate (malate synthase activity) and hMCL was proposed to primarily cleave ß-methylmalyl-CoA to propionyl-CoA and glyoxylate. Here we studied the physiological functions of these enzymes during acetate assimilation in H. hispanica by using biochemical assays of the wild type and deletion mutants. Our results reveal that the main physiological function of hMS is malyl-CoA (not malate) formation and that hMCL catalyzes a ß-methylmalyl-CoA lyase reaction in vivo The malyl-CoA thioesterase activities of both enzymes appear to be not essential for growth on acetate. Interestingly, despite the different physiological functions of hMS and hMCL, structural comparisons predict that these two proteins have virtually identical active sites, thus highlighting the need for experimental validation of their catalytic functions. Our results provide further proof of the operation of the methylaspartate cycle and indicate the existence of a distinct, yet-to-be-discovered malyl-CoA thioesterase in haloarchaea. IMPORTANCE: Acetate is one of the most important substances in natural environments. The activated form of acetate, acetyl coenzyme A (acetyl-CoA), is the high-energy intermediate at the crossroads of central metabolism: its oxidation generates energy for the cell, and about a third of all biosynthetic fluxes start directly from acetyl-CoA. Many organic compounds enter the central carbon metabolism via this key molecule. To sustain growth on acetyl-CoA-generating compounds, a dedicated assimilation (anaplerotic) pathway is required. The presence of an anaplerotic pathway is a prerequisite for growth in many environments, being important for environmentally, industrially, and clinically important microorganisms. Here we studied specific reactions of a recently discovered acetate assimilation pathway, the methylaspartate cycle, functioning in extremely halophilic archaea.
[Mh] Termos MeSH primário: Ácido Aspártico/análogos & derivados
Regulação da Expressão Gênica em Archaea/fisiologia
Regulação Enzimológica da Expressão Gênica/fisiologia
Haloarcula/enzimologia
Malato Sintase/metabolismo
Oxo-Ácido-Liases/metabolismo
[Mh] Termos MeSH secundário: Ácido Aspártico/metabolismo
Extratos Celulares
Haloarcula/genética
Haloarcula/metabolismo
Malato Sintase/genética
Mutação
Oxo-Ácido-Liases/genética
Filogenia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Cell Extracts); 30KYC7MIAI (Aspartic Acid); EC 2.3.3.9 (Malate Synthase); EC 4.1.3.- (Oxo-Acid-Lyases); EC 4.1.3.- (beta-methylmalyl-coenzyme A lyase)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170815
[Lr] Data última revisão:
170815
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161207
[St] Status:MEDLINE


  4 / 339 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27738104
[Au] Autor:Huang HL; Krieger IV; Parai MK; Gawandi VB; Sacchettini JC
[Ad] Endereço:From the Departments of Chemistry and.
[Ti] Título:Mycobacterium tuberculosis Malate Synthase Structures with Fragments Reveal a Portal for Substrate/Product Exchange.
[So] Source:J Biol Chem;291(53):27421-27432, 2016 12 30.
[Is] ISSN:1083-351X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Fragment screening and high throughput screening are complementary approaches that combine with structural biology to explore the binding capabilities of an active site. We have used a fragment-based approach on malate synthase (GlcB) from Mycobacterium tuberculosis and discovered several novel binding chemotypes. In addition, the crystal structures of GlcB in complex with these fragments indicated conformational changes in the active site that represent the enzyme conformations during catalysis. Additional structures of the complex with malate and of the apo form of GlcB supported that hypothesis. Comparative analysis of GlcB structures in complex with 18 fragments allowed us to characterize the preferred chemotypes and their binding modes. The fragment structures showed a hydrogen bond to the backbone carbonyl of Met-631. We successfully incorporated an indole group from a fragment into an existing phenyl-diketo acid series. The resulting indole-containing inhibitor was 100-fold more potent than the parent phenyl-diketo acid with an IC value of 20 nm.
[Mh] Termos MeSH primário: Malato Sintase/química
Malato Sintase/metabolismo
Malatos/metabolismo
Mycobacterium tuberculosis/enzimologia
[Mh] Termos MeSH secundário: Sítios de Ligação
Catálise
Domínio Catalítico
Cristalografia por Raios X
Modelos Moleculares
Conformação Proteica
Especificidade por Substrato
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Malates); 817L1N4CKP (malic acid); EC 2.3.3.9 (Malate Synthase)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:171107
[Lr] Data última revisão:
171107
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161015
[St] Status:MEDLINE
[do] DOI:10.1074/jbc.M116.750877


  5 / 339 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:27678487
[Au] Autor:Effelsberg D; Cruz-Zaragoza LD; Schliebs W; Erdmann R
[Ad] Endereço:Abteilung Systembiochemie, Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, Bochum D-44780, Germany.
[Ti] Título:Pex9p is a new yeast peroxisomal import receptor for PTS1-containing proteins.
[So] Source:J Cell Sci;129(21):4057-4066, 2016 Nov 01.
[Is] ISSN:1477-9137
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Peroxisomal proteins carrying a type 1 peroxisomal targeting signal (PTS1) are recognized by the well-conserved cycling import receptor Pex5p. The yeast YMR018W gene encodes a Pex5p paralog and newly identified peroxin that is involved in peroxisomal import of a subset of matrix proteins. The new peroxin was designated Pex9p, and it interacts with the docking protein Pex14p and a subclass of PTS1-containing peroxisomal matrix enzymes. Unlike Pex5p, Pex9p is not expressed in glucose- or ethanol-grown cells, but it is strongly induced by oleate. Under these conditions, Pex9p acts as a cytosolic and membrane-bound peroxisome import receptor for both malate synthase isoenzymes, Mls1p and Mls2p. The inducible Pex9p-dependent import pathway provides a mechanism for the oleate-inducible peroxisomal targeting of malate synthases. The existence of two distinct PTS1 receptors, in addition to two PTS2-dependent import routes, contributes to the adaptive metabolic capacity of peroxisomes in response to environmental changes and underlines the role of peroxisomes as multi-purpose organelles. The identification of different import routes into peroxisomes contributes to the molecular understanding of how regulated protein targeting can alter the function of organelles according to cellular needs.
[Mh] Termos MeSH primário: Peroxissomos/metabolismo
Sinais Direcionadores de Proteínas
Proteínas de Saccharomyces cerevisiae/metabolismo
Saccharomyces cerevisiae/metabolismo
[Mh] Termos MeSH secundário: Membranas Intracelulares/efeitos dos fármacos
Membranas Intracelulares/metabolismo
Malato Sintase/metabolismo
Modelos Biológicos
Ácido Oleico/farmacologia
Peroxissomos/efeitos dos fármacos
Ligação Proteica/efeitos dos fármacos
Sinais Direcionadores de Proteínas/efeitos dos fármacos
Transporte Proteico/efeitos dos fármacos
Saccharomyces cerevisiae/efeitos dos fármacos
Proteínas de Saccharomyces cerevisiae/química
Homologia Estrutural de Proteína
Frações Subcelulares/efeitos dos fármacos
Frações Subcelulares/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Protein Sorting Signals); 0 (Saccharomyces cerevisiae Proteins); 2UMI9U37CP (Oleic Acid); EC 2.3.3.9 (Malate Synthase)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170807
[Lr] Data última revisão:
170807
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160929
[St] Status:MEDLINE


  6 / 339 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:27590807
[Au] Autor:Nguyen TN; Yeh CW; Tsai PC; Lee K; Huang SL
[Ad] Endereço:Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
[Ti] Título:Transposon Mutagenesis Identifies Genes Critical for Growth of Pseudomonas nitroreducens TX1 on Octylphenol Polyethoxylates.
[So] Source:Appl Environ Microbiol;82(22):6584-6592, 2016 Nov 15.
[Is] ISSN:1098-5336
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Pseudomonas nitroreducens TX1 is of special interest because of its ability to utilize 0.05% to 20% octylphenol polyethoxylates (OPEO ) as a sole source of carbon. In this study, a library containing 30,000 Tn5-insertion mutants of the wild-type strain TX1 was constructed and screened for OPEO utilization, and 93 mutants were found to be unable to grow on OPEO In total, 42 separate disrupted genes were identified, and the proteins encoded by the genes were then classified into various categories, namely, information storage and processing (14.3%), cellular processes and signaling (28.6%), metabolism (35.7%), and unknown proteins (21.4%). The individual deletion of genes encoding isocitrate lyase (aceA), malate synthase (aceB), and glycolate dehydrogenase (glcE) was carried out, and the requirement for aceA and aceB but not glcE confirmed the role of the glyoxylate cycle in OPEO degradation. Furthermore, acetaldehyde dehydrogenase and acetyl-coenzyme A (acetyl-CoA) synthetase activity levels were 13.2- and 2.1-fold higher in TX1 cells grown on OPEO than in TX1 cells grown on succinate, respectively. Growth of the various mutants on different carbon sources was tested, and based on these findings, a mechanism involving exoscission to liberate acetaldehyde from the end of the OPEO chain during degradation is proposed for the breakdown of OPEO IMPORTANCE: Octylphenol polyethoxylates belong to the alkylphenol polyethoxylate (APEO ) nonionic surfactant family. Evidence based on the analysis of intermediate metabolites suggested that the primary biodegradation of APEO can be achieved by two possible pathways for the stepwise removal of the C ethoxylate units from the end of the chain. However, direct evidence for these hypotheses is still lacking. In this study, we described the use of transposon mutagenesis to identify genes critical to the catabolism of OPEO by P. nitroreducens TX1. The exoscission of the ethoxylate chain leading to the liberation of acetaldehyde is proposed. Isocitrate lyase and malate synthase in glyoxylate cycle are required in the catabolism of ethoxylated surfactants. Our findings also provide many gene candidates that may help elucidate the mechanisms in stress responses to ethoxylated surfactants by bacteria.
[Mh] Termos MeSH primário: Elementos de DNA Transponíveis
Mutagênese Insercional
Fenóis/metabolismo
Pseudomonas/crescimento & desenvolvimento
Pseudomonas/genética
[Mh] Termos MeSH secundário: Acetaldeído/metabolismo
Oxirredutases do Álcool/genética
Oxirredutases do Álcool/metabolismo
Aldeído Oxirredutases/metabolismo
Proteínas de Bactérias/genética
Proteínas de Bactérias/isolamento & purificação
Deleção de Genes
Isocitrato Liase/genética
Isocitrato Liase/metabolismo
Malato Sintase/genética
Malato Sintase/metabolismo
Pseudomonas/metabolismo
Ácido Succínico/metabolismo
Tensoativos/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (DNA Transposable Elements); 0 (Phenols); 0 (Surface-Active Agents); 0 (octylphenol); AB6MNQ6J6L (Succinic Acid); EC 1.1.- (Alcohol Oxidoreductases); EC 1.1.- (glycolic acid dehydrogenase); EC 1.2.- (Aldehyde Oxidoreductases); EC 1.2.1.5 (aldehyde dehydrogenase (NAD(P)+)); EC 2.3.3.9 (Malate Synthase); EC 4.1.3.1 (Isocitrate Lyase); GO1N1ZPR3B (Acetaldehyde)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171031
[Lr] Data última revisão:
171031
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160904
[St] Status:MEDLINE


  7 / 339 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27036942
[Au] Autor:Ahn S; Jung J; Jang IA; Madsen EL; Park W
[Ad] Endereço:From the Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea and.
[Ti] Título:Role of Glyoxylate Shunt in Oxidative Stress Response.
[So] Source:J Biol Chem;291(22):11928-38, 2016 May 27.
[Is] ISSN:1083-351X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The glyoxylate shunt (GS) is a two-step metabolic pathway (isocitrate lyase, aceA; and malate synthase, glcB) that serves as an alternative to the tricarboxylic acid cycle. The GS bypasses the carbon dioxide-producing steps of the tricarboxylic acid cycle and is essential for acetate and fatty acid metabolism in bacteria. GS can be up-regulated under conditions of oxidative stress, antibiotic stress, and host infection, which implies that it plays important but poorly explored roles in stress defense and pathogenesis. In many bacterial species, including Pseudomonas aeruginosa, aceA and glcB are not in an operon, unlike in Escherichia coli In P. aeruginosa, we explored relationships between GS genes and growth, transcription profiles, and biofilm formation. Contrary to our expectations, deletion of aceA in P. aeruginosa improved cell growth under conditions of oxidative and antibiotic stress. Transcriptome data suggested that aceA mutants underwent a metabolic shift toward aerobic denitrification; this was supported by additional evidence, including up-regulation of denitrification-related genes, decreased oxygen consumption without lowering ATP yield, increased production of denitrification intermediates (NO and N2O), and increased cyanide resistance. The aceA mutants also produced a thicker exopolysaccharide layer; that is, a phenotype consistent with aerobic denitrification. A bioinformatic survey across known bacterial genomes showed that only microorganisms capable of aerobic metabolism possess the glyoxylate shunt. This trend is consistent with the hypothesis that the GS plays a previously unrecognized role in allowing bacteria to tolerate oxidative stress.
[Mh] Termos MeSH primário: Regulação Bacteriana da Expressão Gênica
Glioxilatos/metabolismo
Isocitrato Liase/metabolismo
Malato Sintase/metabolismo
Estresse Oxidativo
Pseudomonas aeruginosa/metabolismo
[Mh] Termos MeSH secundário: Acetatos/metabolismo
Biofilmes/crescimento & desenvolvimento
Biologia Computacional
Genoma Bacteriano
Isocitrato Liase/genética
Malato Sintase/genética
Redes e Vias Metabólicas
Consumo de Oxigênio
Pseudomonas aeruginosa/genética
Pseudomonas aeruginosa/crescimento & desenvolvimento
Transcriptoma
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Acetates); 0 (Glyoxylates); EC 2.3.3.9 (Malate Synthase); EC 4.1.3.1 (Isocitrate Lyase)
[Em] Mês de entrada:1612
[Cu] Atualização por classe:170527
[Lr] Data última revisão:
170527
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160403
[St] Status:MEDLINE
[do] DOI:10.1074/jbc.M115.708149


  8 / 339 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:26884466
[Au] Autor:Aliyu H; De Maayer P; Cowan D
[Ad] Endereço:Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria 0028, South Africa Department of Genetics, University of Pretoria, Pretoria 0028, South Africa.
[Ti] Título:The genome of the Antarctic polyextremophile Nesterenkonia sp. AN1 reveals adaptive strategies for survival under multiple stress conditions.
[So] Source:FEMS Microbiol Ecol;92(4):fiw032, 2016 Apr.
[Is] ISSN:1574-6941
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Nesterenkonia sp. AN1 is a polyextremophile isolated from Antarctic desert soil. Genomic analyses and genome comparisons with three mesophilic Nesterenkonia strains indicated that the unique genome fraction of Nesterenkonia sp. AN1 contains adaptive features implicated in the response to cold stress including modulation of membrane fluidity as well as response to cold-associated osmotic and oxidative stress. The core genome also encodes a number of putative cold stress response proteins. RNA-Seq-based transcriptome analyses of Nesterenkonia sp. AN1 grown at 5ºC and 21°C showed that there was significant induction of transcripts that code for antioxidants at 5ºC, demonstrated by the upregulation of sodA, bcp and bpoA2. There was also overexpression of universal stress protein genes related to uspA, along with genes encoding other characterized cold stress features. Genes encoding the two key enzymes of the glyoxylate cycle, isocitrate lyase (ICL) and malate synthase (AceB) were induced at 5ºC, suggesting possible adaptation strategies for energy metabolism in cold habitats. These genomic features may contribute to the survival of Nesterenkonia sp. AN1 in arid Antarctic soils.
[Mh] Termos MeSH primário: Proteínas e Peptídeos de Choque Frio/genética
Resposta ao Choque Frio/genética
Metabolismo Energético/genética
Micrococcaceae/genética
Estresse Oxidativo/genética
Microbiologia do Solo
[Mh] Termos MeSH secundário: Regiões Antárticas
Proteínas de Bactérias/biossíntese
Proteínas de Bactérias/genética
Metabolismo Energético/fisiologia
Perfilação da Expressão Gênica
Genoma Bacteriano/genética
Proteínas de Choque Térmico/biossíntese
Proteínas de Choque Térmico/genética
Isocitrato Liase/biossíntese
Isocitrato Liase/genética
Malato Sintase/biossíntese
Malato Sintase/genética
Micrococcaceae/isolamento & purificação
Micrococcaceae/metabolismo
Pressão Osmótica/fisiologia
Superóxido Dismutase/biossíntese
Superóxido Dismutase/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Cold Shock Proteins and Peptides); 0 (Heat-Shock Proteins); 0 (universal stress protein A, Bacteria); 136253-16-2 (bacterioferritin comigratory protein, Bacteria); EC 1.15.1.1 (SodA protein, Bacteria); EC 1.15.1.1 (Superoxide Dismutase); EC 2.3.3.9 (Malate Synthase); EC 4.1.3.1 (Isocitrate Lyase)
[Em] Mês de entrada:1611
[Cu] Atualização por classe:170103
[Lr] Data última revisão:
170103
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160218
[St] Status:MEDLINE


  9 / 339 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:26818251
[Au] Autor:Cuenca Mdel S; Molina-Santiago C; Gómez-García MR; Ramos JL
[Ad] Endereço:Abengoa Research, Abengoa, C/ Energía Solar 1, Palmas Altas, Sevilla, 41014, Spain sol.cuenca@abengoa.com.
[Ti] Título:A Pseudomonas putida double mutant deficient in butanol assimilation: a promising step for engineering a biological biofuel production platform.
[So] Source:FEMS Microbiol Lett;363(5):fnw018, 2016 Mar.
[Is] ISSN:1574-6968
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Biological production in heterologous hosts is of interest for the production of the C4 alcohol (butanol) and other chemicals. However, some hurdles need to be overcome in order to achieve an economically viable process; these include avoiding the consumption of butanol and maintaining tolerance to this solvent during production. Pseudomonas putida is a potential host for solvent production; in order to further adapt P. putida to this role, we generated mini-Tn5 mutant libraries in strain BIRD-1 that do not consume butanol. We analyzed the insertion site of the mini-Tn5 in a mutant that was deficient in assimilation of butanol using arbitrary PCR followed by Sanger sequencing and found that the transposon was inserted in the malate synthase B gene. Here, we show that in a second round of mutagenesis a double mutant unable to take up butanol had an insertion in a gene coding for a multisensor hybrid histidine kinase. The genetic context of the histidine kinase sensor revealed the presence of a set of genes potentially involved in butanol assimilation; qRT-PCR analysis showed induction of this set of genes in the wild type and the malate synthase mutant but not in the double mutant.
[Mh] Termos MeSH primário: Biocombustíveis/microbiologia
Butanóis/metabolismo
Engenharia Genética/métodos
Pseudomonas putida/genética
Pseudomonas putida/metabolismo
[Mh] Termos MeSH secundário: Elementos de DNA Transponíveis/genética
Histidina Quinase
Malato Sintase/genética
Mutagênese Insercional
Proteínas Quinases/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Biofuels); 0 (Butanols); 0 (DNA Transposable Elements); EC 2.3.3.9 (Malate Synthase); EC 2.7.- (Protein Kinases); EC 2.7.13.1 (Histidine Kinase)
[Em] Mês de entrada:1611
[Cu] Atualização por classe:170103
[Lr] Data última revisão:
170103
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160129
[St] Status:MEDLINE


  10 / 339 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:26782997
[Au] Autor:Bergen AC; Olsen GM; Fay JC
[Ad] Endereço:Molecular Genetics and Genomics Program, Washington University, St. Louis.
[Ti] Título:Divergent MLS1 Promoters Lie on a Fitness Plateau for Gene Expression.
[So] Source:Mol Biol Evol;33(5):1270-9, 2016 05.
[Is] ISSN:1537-1719
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Qualitative patterns of gene activation and repression are often conserved despite an abundance of quantitative variation in expression levels within and between species. A major challenge to interpreting patterns of expression divergence is knowing which changes in gene expression affect fitness. To characterize the fitness effects of gene expression divergence, we placed orthologous promoters from eight yeast species upstream of malate synthase (MLS1) in Saccharomyces cerevisiae As expected, we found these promoters varied in their expression level under activated and repressed conditions as well as in their dynamic response following loss of glucose repression. Despite these differences, only a single promoter driving near basal levels of expression caused a detectable loss of fitness. We conclude that the MLS1 promoter lies on a fitness plateau whereby even large changes in gene expression can be tolerated without a substantial loss of fitness.
[Mh] Termos MeSH primário: Regulação Fúngica da Expressão Gênica
Aptidão Genética
Malato Sintase/genética
Saccharomyces cerevisiae/genética
[Mh] Termos MeSH secundário: DNA Fúngico/genética
Evolução Molecular
Genes Fúngicos
Malato Sintase/biossíntese
Regiões Promotoras Genéticas
Saccharomyces cerevisiae/enzimologia
Saccharomyces cerevisiae/metabolismo
Proteínas de Saccharomyces cerevisiae/biossíntese
Proteínas de Saccharomyces cerevisiae/genética
Fatores de Transcrição/genética
Ativação Transcricional
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL
[Nm] Nome de substância:
0 (DNA, Fungal); 0 (Saccharomyces cerevisiae Proteins); 0 (Transcription Factors); EC 2.3.3.9 (Malate Synthase)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:171122
[Lr] Data última revisão:
171122
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160120
[St] Status:MEDLINE
[do] DOI:10.1093/molbev/msw010



página 1 de 34 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde