Base de dados : MEDLINE
Pesquisa : D08.811.913.555.275 [Categoria DeCS]
Referências encontradas : 183 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 19 ir para página                         

  1 / 183 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28539366
[Au] Autor:Senger M; Stripp ST; Soboh B
[Ad] Endereço:From the Department of Physics, Experimental Molecular Biophysics, Freie Universitaet Berlin, 14195 Berlin, Germany.
[Ti] Título:Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis.
[So] Source:J Biol Chem;292(28):11670-11681, 2017 Jul 14.
[Is] ISSN:1083-351X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Metalloenzymes catalyze complex and essential processes, such as photosynthesis, respiration, and nitrogen fixation. For example, bacteria and archaea use [NiFe]-hydrogenases to catalyze the uptake and release of molecular hydrogen (H ). [NiFe]-hydrogenases are redox enzymes composed of a large subunit that harbors a NiFe(CN) CO metallo-center and a small subunit with three iron-sulfur clusters. The large subunit is synthesized with a C-terminal extension, cleaved off by a specific endopeptidase during maturation. The exact role of the C-terminal extension has remained elusive; however, cleavage takes place exclusively after assembly of the [NiFe]-cofactor and before large and small subunits form the catalytically active heterodimer. To unravel the functional role of the C-terminal extension, we used an enzymatic maturation assay that allows synthesizing functional [NiFe]-hydrogenase-2 of from purified components. The maturation process included formation and insertion of the NiFe(CN) CO cofactor into the large subunit, endoproteolytic cleavage of the C-terminal extension, and dimerization with the small subunit. Biochemical and spectroscopic analysis indicated that the C-terminal extension of the large subunit is essential for recognition by the maturation machinery. Only upon completion of cofactor insertion was removal of the C-terminal extension observed. Our results indicate that endoproteolytic cleavage is a central checkpoint in the maturation process. Here, cleavage temporally orchestrates cofactor insertion and protein assembly and ensures that only cofactor-containing protein can continue along the assembly line toward functional [NiFe]-hydrogenase.
[Mh] Termos MeSH primário: Coenzimas/metabolismo
Precursores Enzimáticos/metabolismo
Proteínas de Escherichia coli/metabolismo
Escherichia coli/enzimologia
Hidrogenase/metabolismo
Modelos Moleculares
Processamento de Proteína Pós-Traducional
[Mh] Termos MeSH secundário: Carboxil e Carbamoil Transferases/química
Carboxil e Carbamoil Transferases/genética
Carboxil e Carbamoil Transferases/metabolismo
Proteínas de Transporte/química
Proteínas de Transporte/genética
Proteínas de Transporte/metabolismo
Dimerização
Endopeptidases/química
Endopeptidases/genética
Endopeptidases/metabolismo
Precursores Enzimáticos/química
Precursores Enzimáticos/genética
Proteínas de Escherichia coli/química
Proteínas de Escherichia coli/genética
Proteínas de Ligação ao GTP/química
Proteínas de Ligação ao GTP/genética
Proteínas de Ligação ao GTP/metabolismo
Hidrogenase/química
Hidrogenase/genética
Isoenzimas/química
Isoenzimas/genética
Isoenzimas/metabolismo
Chaperonas Moleculares/química
Chaperonas Moleculares/genética
Chaperonas Moleculares/metabolismo
Mutagênese Sítio-Dirigida
Mutação
Dobramento de Proteína
Multimerização Proteica
Subunidades Proteicas/química
Subunidades Proteicas/genética
Subunidades Proteicas/metabolismo
Proteólise
Proteínas Recombinantes/química
Proteínas Recombinantes/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Carrier Proteins); 0 (Coenzymes); 0 (Enzyme Precursors); 0 (Escherichia coli Proteins); 0 (HybG protein, E coli); 0 (HypA protein, E coli); 0 (HypB protein, E coli); 0 (HypC protein, E coli); 0 (HypE protein, E coli); 0 (Isoenzymes); 0 (Molecular Chaperones); 0 (Protein Subunits); 0 (Recombinant Proteins); EC 1.12.- (nickel-iron hydrogenase); EC 1.12.7.2 (Hydrogenase); EC 2.1.3.- (Carboxyl and Carbamoyl Transferases); EC 2.1.3.- (hypF protein, E coli); EC 3.4.- (Endopeptidases); EC 3.4.99.- (hydrogenase maturating endopeptidase HYBD); EC 3.6.1.- (GTP-Binding Proteins)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170803
[Lr] Data última revisão:
170803
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170526
[St] Status:MEDLINE
[do] DOI:10.1074/jbc.M117.788125


  2 / 183 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27471863
[Au] Autor:Silvers MA; Pakhomova S; Neau DB; Silvers WC; Anzalone N; Taylor CM; Waldrop GL
[Ti] Título:Crystal Structure of Carboxyltransferase from Staphylococcus aureus Bound to the Antibacterial Agent Moiramide B.
[So] Source:Biochemistry;55(33):4666-74, 2016 Aug 23.
[Is] ISSN:1520-4995
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The dramatic increase in the prevalence of antibiotic-resistant bacteria has necessitated a search for new antibacterial agents against novel targets. Moiramide B is a natural product, broad-spectrum antibiotic that inhibits the carboxyltransferase component of acetyl-CoA carboxylase, which catalyzes the first committed step in fatty acid synthesis. Herein, we report the 2.6 Å resolution crystal structure of moiramide B bound to carboxyltransferase. An unanticipated but significant finding was that moiramide B bound as the enol/enolate. Crystallographic studies demonstrate that the (4S)-methyl succinimide moiety interacts with the oxyanion holes of the enzyme, supporting the notion that an anionic enolate is the active form of the antibacterial agent. Structure-activity studies demonstrate that the unsaturated fatty acid tail of moiramide B is needed only for entry into the bacterial cell. These results will allow the design of new antibacterial agents against the bacterial form of carboxyltransferase.
[Mh] Termos MeSH primário: Amidas/metabolismo
Antibacterianos/metabolismo
Carboxil e Carbamoil Transferases/química
Staphylococcus aureus/enzimologia
Succinimidas/metabolismo
[Mh] Termos MeSH secundário: Carboxil e Carbamoil Transferases/metabolismo
Cristalografia por Raios X
Conformação Proteica
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Amides); 0 (Anti-Bacterial Agents); 0 (Succinimides); 0 (moiramide B); EC 2.1.3.- (Carboxyl and Carbamoyl Transferases)
[Em] Mês de entrada:1705
[Cu] Atualização por classe:170824
[Lr] Data última revisão:
170824
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160730
[St] Status:MEDLINE
[do] DOI:10.1021/acs.biochem.6b00641


  3 / 183 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27396827
[Au] Autor:Hagmann A; Hunkeler M; Stuttfeld E; Maier T
[Ad] Endereço:Department Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
[Ti] Título:Hybrid Structure of a Dynamic Single-Chain Carboxylase from Deinococcus radiodurans.
[So] Source:Structure;24(8):1227-1236, 2016 Aug 02.
[Is] ISSN:1878-4186
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Biotin-dependent acyl-coenzyme A (CoA) carboxylases (aCCs) are involved in key steps of anabolic pathways and comprise three distinct functional units: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyl transferase (CT). YCC multienzymes are a poorly characterized family of prokaryotic aCCs of unidentified substrate specificity, which integrate all functional units into a single polypeptide chain. We employed a hybrid approach to study the dynamic structure of Deinococcus radiodurans (Dra) YCC: crystal structures of isolated domains reveal a hexameric CT core with extended substrate binding pocket and a dimeric BC domain. Negative-stain electron microscopy provides an approximation of the variable positioning of the BC dimers relative to the CT core. Small-angle X-ray scattering yields quantitative information on the ensemble of Dra YCC structures in solution. Comparison with other carrier protein-dependent multienzymes highlights a characteristic range of large-scale interdomain flexibility in this important class of biosynthetic enzymes.
[Mh] Termos MeSH primário: Acetil-CoA Carboxilase/química
Proteínas de Bactérias/química
Biotina/química
Carbono-Nitrogênio Ligases/química
Carboxil e Carbamoil Transferases/química
Deinococcus/química
[Mh] Termos MeSH secundário: Acetil-CoA Carboxilase/genética
Acetil-CoA Carboxilase/metabolismo
Motivos de Aminoácidos
Animais
Proteínas de Bactérias/genética
Proteínas de Bactérias/metabolismo
Baculoviridae/genética
Baculoviridae/metabolismo
Sítios de Ligação
Biotina/metabolismo
Carbono-Nitrogênio Ligases/genética
Carbono-Nitrogênio Ligases/metabolismo
Carboxil e Carbamoil Transferases/genética
Carboxil e Carbamoil Transferases/metabolismo
Clonagem Molecular
Cristalografia por Raios X
Deinococcus/enzimologia
Escherichia coli/química
Escherichia coli/enzimologia
Ácido Graxo Sintase Tipo II/química
Ácido Graxo Sintase Tipo II/genética
Ácido Graxo Sintase Tipo II/metabolismo
Expressão Gênica
Modelos Moleculares
Ligação Proteica
Conformação Proteica em alfa-Hélice
Conformação Proteica em Folha beta
Domínios e Motivos de Interação entre Proteínas
Multimerização Proteica
Proteínas Recombinantes/química
Proteínas Recombinantes/genética
Proteínas Recombinantes/metabolismo
Espalhamento a Baixo Ângulo
Células Sf9
Spodoptera
Especificidade por Substrato
Difração de Raios X
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Recombinant Proteins); 6SO6U10H04 (Biotin); EC 2.1.3.- (Carboxyl and Carbamoyl Transferases); EC 6.- (Fatty Acid Synthase, Type II); EC 6.3.- (Carbon-Nitrogen Ligases); EC 6.3.4.14 (biotin carboxylase); EC 6.4.1.2 (Acetyl-CoA Carboxylase); EC 6.4.1.2 (biotin carboxyl carrier protein)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171006
[Lr] Data última revisão:
171006
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160712
[St] Status:MEDLINE


  4 / 183 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27254467
[Au] Autor:Westerhold LE; Adams SL; Bergman HL; Zeczycki TN
[Ad] Endereço:Department of Biochemistry and Molecular Biology and the ‡East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University , Greenville, North Carolina 27834, United States.
[Ti] Título:Pyruvate Occupancy in the Carboxyl Transferase Domain of Pyruvate Carboxylase Facilitates Product Release from the Biotin Carboxylase Domain through an Intermolecular Mechanism.
[So] Source:Biochemistry;55(24):3447-60, 2016 Jun 21.
[Is] ISSN:1520-4995
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Protein structure, ligand binding, and catalytic turnover contributes to the governance of catalytic events occurring at spatially distinct domains in multifunctional enzymes. Coordination of these catalytic events partially rests on the ability of spatially discrete active sites to communicate with other allosteric and active sites on the same polypeptide chain (intramolecular) or on different polypeptide chains (intermolecular) within the holoenzyme. Often, communication results in long-range effects on substrate binding or product release. For example, pyruvate binding to the carboxyl transferase (CT) domain of pyruvate carboxylase (PC) increases the rate of product release in the biotin carboxylase (BC) domain. In order to address how CT domain ligand occupancy is "sensed" by other domains, we generated functional, mixed hybrid tetramers using the E218A (inactive BC domain) and T882S (low pyruvate binding, low activity) mutant forms of PC. The apparent Ka pyruvate for the pyruvate-stimulated release of Pi catalyzed by the T882S:E218A[1:1] hybrid tetramer was comparable to the wild-type enzyme and nearly 10-fold lower than that for the T882S homotetramer. In addition, the ratio of the rates of oxaloacetate formation to Pi release for the WT:T882S[1:1] and E218A:T882S[1:1] hybrid tetramer-catalyzed reactions was 0.5 and 0.6, respectively, while the T882S homotetramer exhibited a near 1:1 coupling of the two domains, suggesting that the mechanisms coordinating catalytic events is more complicated that we initially assumed. The results presented here are consistent with an intermolecular communication mechanism, where pyruvate binding to the CT domain is "sensed" by domains on a different polypeptide chain within the tetramer.
[Mh] Termos MeSH primário: Proteínas de Bactérias/química
Biotina/metabolismo
Carbono-Nitrogênio Ligases/química
Carboxil e Carbamoil Transferases/química
Piruvato Carboxilase/química
Ácido Pirúvico/química
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Proteínas de Bactérias/metabolismo
Sítios de Ligação
Carbono-Nitrogênio Ligases/metabolismo
Carboxil e Carbamoil Transferases/metabolismo
Domínio Catalítico
Cristalografia por Raios X
Cinética
Modelos Moleculares
Mutagênese Sítio-Dirigida
Mutação/genética
Conformação Proteica
Piruvato Carboxilase/genética
Piruvato Carboxilase/metabolismo
Ácido Pirúvico/metabolismo
Homologia de Sequência de Aminoácidos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 6SO6U10H04 (Biotin); 8558G7RUTR (Pyruvic Acid); EC 2.1.3.- (Carboxyl and Carbamoyl Transferases); EC 6.3.- (Carbon-Nitrogen Ligases); EC 6.3.4.14 (biotin carboxylase); EC 6.4.1.1 (Pyruvate Carboxylase)
[Em] Mês de entrada:1705
[Cu] Atualização por classe:170502
[Lr] Data última revisão:
170502
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160603
[St] Status:MEDLINE
[do] DOI:10.1021/acs.biochem.6b00372


  5 / 183 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27091637
[Au] Autor:Salie MJ; Thelen JJ
[Ad] Endereço:Department of Biochemistry, University of Missouri-Columbia, Christopher S. Bond Life Sciences Center, 1201 E. Rollins, Columbia, MO 65201, USA. Electronic address: mjst27@missouri.edu.
[Ti] Título:Regulation and structure of the heteromeric acetyl-CoA carboxylase.
[So] Source:Biochim Biophys Acta;1861(9 Pt B):1207-1213, 2016 Sep.
[Is] ISSN:0006-3002
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:The enzyme acetyl-CoA carboxylase (ACCase) catalyzes the committed step of the de novo fatty acid biosynthesis (FAS) pathway by converting acetyl-CoA to malonyl-CoA. Two forms of ACCase exist in nature, a homomeric and heteromic form. The heteromeric form of this enzyme requires four different subunits for activity: biotin carboxylase; biotin carboxyl carrier protein; and α- and ß-carboxyltransferases. Heteromeric ACCases (htACCase) can be found in prokaryotes and the plastids of most plants. The plant htACCase is regulated by diverse mechanisms reflected by the biochemical and genetic complexity of this multienzyme complex and the plastid stroma where it resides. In this review we summarize the regulation of the plant htACCase and also describe the structural characteristics of this complex from both prokaryotes and plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
[Mh] Termos MeSH primário: Acetil-CoA Carboxilase/genética
Carbono-Nitrogênio Ligases/genética
Ácidos Graxos/biossíntese
[Mh] Termos MeSH secundário: Acetilcoenzima A/metabolismo
Acetil-CoA Carboxilase/química
Sequência de Aminoácidos/genética
Carbono-Nitrogênio Ligases/química
Carboxil e Carbamoil Transferases/química
Carboxil e Carbamoil Transferases/genética
Ácido Graxo Sintase Tipo II/química
Ácido Graxo Sintase Tipo II/genética
Ácidos Graxos/genética
Plantas/enzimologia
Plastídeos/enzimologia
Células Procarióticas/enzimologia
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Fatty Acids); 72-89-9 (Acetyl Coenzyme A); EC 2.1.3.- (Carboxyl and Carbamoyl Transferases); EC 6.- (Fatty Acid Synthase, Type II); EC 6.3.- (Carbon-Nitrogen Ligases); EC 6.3.4.14 (biotin carboxylase); EC 6.4.1.2 (Acetyl-CoA Carboxylase); EC 6.4.1.2 (biotin carboxyl carrier protein)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170916
[Lr] Data última revisão:
170916
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160420
[St] Status:MEDLINE


  6 / 183 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:26886160
[Au] Autor:Petras D; Kerwat D; Pesic A; Hempel BF; von Eckardstein L; Semsary S; Arasté J; Marguerettaz M; Royer M; Cociancich S; Süssmuth RD
[Ad] Endereço:Institut für Chemie, Technische Universität Berlin , Straße des 17. Juni 124, 10623 Berlin, Germany.
[Ti] Título:The O-Carbamoyl-Transferase Alb15 Is Responsible for the Modification of Albicidin.
[So] Source:ACS Chem Biol;11(5):1198-204, 2016 05 20.
[Is] ISSN:1554-8937
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Albicidin is a potent antibiotic and phytotoxin produced by Xanthomonas albilineans which targets the plant and bacterial DNA gyrase. We now report on a new albicidin derivative which is carbamoylated at the N-terminal coumaric acid by the action of the ATP-dependent O-carbamoyltransferase Alb15, present in the albicidin (alb) gene cluster. Carbamoyl-albicidin was characterized by tandem mass spectrometry from cultures of a Xanthomonas overproducer strain and the gene function confirmed by gene inactivation of alb15 in X. albilineans. Expression of alb15 in Escherichia coli and in vitro reconstitution of the carbamoyltransferase activity confirmed albicidin as the substrate. The chemical synthesis of carbamoyl-albicidin finally enabled us to assess its bioactivity by means of in vitro gyrase inhibition and antibacterial assays. Compared to albicidin, carbamoyl-albicidin showed a significantly higher inhibitory efficiency against bacterial gyrase (∼8 vs 49 nM), which identifies the carbamoyl group as an important structural feature of albicidin maturation.
[Mh] Termos MeSH primário: Proteínas de Bactérias/metabolismo
Carboxil e Carbamoil Transferases/metabolismo
Xanthomonas/enzimologia
[Mh] Termos MeSH secundário: Proteínas de Bactérias/genética
Carboxil e Carbamoil Transferases/genética
Genes Bacterianos
Família Multigênica
Compostos Orgânicos/química
Compostos Orgânicos/metabolismo
Especificidade por Substrato
Xanthomonas/química
Xanthomonas/genética
Xanthomonas/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Organic Chemicals); 96955-97-4 (albicidin); EC 2.1.3.- (3'-hydroxymethylcephem O-carbamoyltransferase); EC 2.1.3.- (Carboxyl and Carbamoyl Transferases)
[Em] Mês de entrada:1704
[Cu] Atualização por classe:170404
[Lr] Data última revisão:
170404
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160218
[St] Status:MEDLINE
[do] DOI:10.1021/acschembio.5b01001


  7 / 183 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:26812789
[Au] Autor:Cappelli S; Penco A; Mannini B; Cascella R; Wilson MR; Ecroyd H; Li X; Buxbaum JN; Dobson CM; Cecchi C; Relini A; Chiti F
[Ti] Título:Effect of molecular chaperones on aberrant protein oligomers in vitro: super-versus sub-stoichiometric chaperone concentrations.
[So] Source:Biol Chem;397(5):401-15, 2016 May.
[Is] ISSN:1437-4315
[Cp] País de publicação:Germany
[La] Idioma:eng
[Ab] Resumo:Living systems protect themselves from aberrant proteins by a network of chaperones. We have tested in vitro the effects of different concentrations, ranging from 0 to 16 µm, of two molecular chaperones, namely αB-crystallin and clusterin, and an engineered monomeric variant of transthyretin (M-TTR), on the morphology and cytotoxicity of preformed toxic oligomers of HypF-N, which represent a useful model of misfolded protein aggregates. Using atomic force microscopy imaging and static light scattering analysis, all were found to bind HypF-N oligomers and increase the size of the aggregates, to an extent that correlates with chaperone concentration. SDS-PAGE profiles have shown that the large aggregates were predominantly composed of the HypF-N protein. ANS fluorescence measurements show that the chaperone-induced clustering of HypF-N oligomers does not change the overall solvent exposure of hydrophobic residues on the surface of the oligomers. αB-crystallin, clusterin and M-TTR can diminish the cytotoxic effects of the HypF-N oligomers at all chaperone concentration, as demonstrated by MTT reduction and Ca2+ influx measurements. The observation that the protective effect is primarily at all concentrations of chaperones, both when the increase in HypF-N aggregate size is minimal and large, emphasizes the efficiency and versatility of these protein molecules.
[Mh] Termos MeSH primário: Carboxil e Carbamoil Transferases/química
Clusterina/química
Proteínas de Escherichia coli/química
Cadeia B de alfa-Cristalina/química
[Mh] Termos MeSH secundário: Animais
Carboxil e Carbamoil Transferases/metabolismo
Linhagem Celular Tumoral
Clusterina/genética
Clusterina/metabolismo
Proteínas de Escherichia coli/metabolismo
Seres Humanos
Camundongos
Pré-Albumina/química
Pré-Albumina/genética
Pré-Albumina/metabolismo
Agregados Proteicos
Dobramento de Proteína
Proteínas Recombinantes/química
Proteínas Recombinantes/genética
Cadeia B de alfa-Cristalina/genética
Cadeia B de alfa-Cristalina/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Clusterin); 0 (Escherichia coli Proteins); 0 (Prealbumin); 0 (Protein Aggregates); 0 (Recombinant Proteins); 0 (alpha-Crystallin B Chain); EC 2.1.3.- (Carboxyl and Carbamoyl Transferases); EC 2.1.3.- (hypF protein, E coli)
[Em] Mês de entrada:1611
[Cu] Atualização por classe:161230
[Lr] Data última revisão:
161230
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160127
[St] Status:MEDLINE


  8 / 183 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:26274952
[Au] Autor:Shi D; Allewell NM; Tuchman M
[Ad] Endereço:Center for Genetic Medicine Research, Children's National Medical Center, the George Washington University, Washington, DC 20010, USA. dshi@childrensnational.org.
[Ti] Título:From Genome to Structure and Back Again: A Family Portrait of the Transcarbamylases.
[So] Source:Int J Mol Sci;16(8):18836-64, 2015 Aug 12.
[Is] ISSN:1422-0067
[Cp] País de publicação:Switzerland
[La] Idioma:eng
[Ab] Resumo:Enzymes in the transcarbamylase family catalyze the transfer of a carbamyl group from carbamyl phosphate (CP) to an amino group of a second substrate. The two best-characterized members, aspartate transcarbamylase (ATCase) and ornithine transcarbamylase (OTCase), are present in most organisms from bacteria to humans. Recently, structures of four new transcarbamylase members, N-acetyl-L-ornithine transcarbamylase (AOTCase), N-succinyl-L-ornithine transcarbamylase (SOTCase), ygeW encoded transcarbamylase (YTCase) and putrescine transcarbamylase (PTCase) have also been determined. Crystal structures of these enzymes have shown that they have a common overall fold with a trimer as their basic biological unit. The monomer structures share a common CP binding site in their N-terminal domain, but have different second substrate binding sites in their C-terminal domain. The discovery of three new transcarbamylases, l-2,3-diaminopropionate transcarbamylase (DPTCase), l-2,4-diaminobutyrate transcarbamylase (DBTCase) and ureidoglycine transcarbamylase (UGTCase), demonstrates that our knowledge and understanding of the spectrum of the transcarbamylase family is still incomplete. In this review, we summarize studies on the structures and function of transcarbamylases demonstrating how structural information helps to define biological function and how small structural differences govern enzyme specificity. Such information is important for correctly annotating transcarbamylase sequences in the genome databases and for identifying new members of the transcarbamylase family.
[Mh] Termos MeSH primário: Carboxil e Carbamoil Transferases/química
Carboxil e Carbamoil Transferases/genética
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Carboxil e Carbamoil Transferases/metabolismo
Catálise
Domínio Catalítico
Bases de Dados Genéticas
Seres Humanos
Modelos Moleculares
Dados de Sequência Molecular
Conformação Proteica
Domínios e Motivos de Interação entre Proteínas
Multimerização Proteica
Alinhamento de Sequência
Especificidade por Substrato
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; REVIEW
[Nm] Nome de substância:
EC 2.1.3.- (Carboxyl and Carbamoyl Transferases)
[Em] Mês de entrada:1605
[Cu] Atualização por classe:170220
[Lr] Data última revisão:
170220
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:150815
[St] Status:MEDLINE
[do] DOI:10.3390/ijms160818836


  9 / 183 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:25728237
[Au] Autor:Guo Z; Li J; Qin H; Wang M; Lv X; Li X; Chen Y
[Ad] Endereço:State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China).
[Ti] Título:Biosynthesis of the carbamoylated D-gulosamine moiety of streptothricins: involvement of a guanidino-N-glycosyltransferase and an N-acetyl-D-gulosamine deacetylase.
[So] Source:Angew Chem Int Ed Engl;54(17):5175-8, 2015 Apr 20.
[Is] ISSN:1521-3773
[Cp] País de publicação:Germany
[La] Idioma:eng
[Ab] Resumo:Streptothricins (STNs) are atypical aminoglycosides containing a rare carbamoylated D-gulosamine (D-GulN) moiety, and the antimicrobial activity of STNs has been exploited for crop protection. Herein, the biosynthetic pathway of the carbamoylated D-GulN moiety was delineated. An N-acetyl-D-galactosamine is first attached to the streptolidine lactam by the glycosyltransferse StnG and then epimerized to N-acetyl-D-gulosamine by the putative epimerase StnJ. After carbamoylation by the carbamoyltransferase StnQ, N-acetyl-D-GulN is deacetylated by StnI to furnish the carbamoylated D-GulN moiety. In vitro studies characterized two novel enzymes: StnG is an unprecedented GT-A fold N-glycosyltransferase that glycosylates the imine nitrogen atom of guanidine, and StnI is the first reported N-acetyl-D-GulN deacetylase.
[Mh] Termos MeSH primário: Carboxil e Carbamoil Transferases/metabolismo
Glicosiltransferases/metabolismo
Estreptotricinas/biossíntese
[Mh] Termos MeSH secundário: Antibacterianos/biossíntese
Antibacterianos/química
Antibacterianos/farmacologia
Glicosilação
Família Multigênica
Pseudomonas aeruginosa/efeitos dos fármacos
Staphylococcus aureus/efeitos dos fármacos
Streptomyces/genética
Estreptotricinas/química
Estreptotricinas/farmacologia
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Anti-Bacterial Agents); 54003-27-9 (Streptothricins); EC 2.1.3.- (Carboxyl and Carbamoyl Transferases); EC 2.4.- (Glycosyltransferases)
[Em] Mês de entrada:1601
[Cu] Atualização por classe:150415
[Lr] Data última revisão:
150415
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:150303
[St] Status:MEDLINE
[do] DOI:10.1002/anie.201412190


  10 / 183 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:25557370
[Au] Autor:Gerhardt EC; Rodrigues TE; Müller-Santos M; Pedrosa FO; Souza EM; Forchhammer K; Huergo LF
[Ad] Endereço:Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CEP 81531-990 CP 19046, Curitiba, PR, Brazil; Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany.
[Ti] Título:The bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase.
[So] Source:Mol Microbiol;95(6):1025-35, 2015 Mar.
[Is] ISSN:1365-2958
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Biosynthesis of fatty acids is one of the most fundamental biochemical pathways in nature. In bacteria and plant chloroplasts, the committed and rate-limiting step in fatty acid biosynthesis is catalyzed by a multi-subunit form of the acetyl-CoA carboxylase enzyme (ACC). This enzyme carboxylates acetyl-CoA to produce malonyl-CoA, which in turn acts as the building block for fatty acid elongation. In Escherichia coli, ACC is comprised of three functional modules: the biotin carboxylase (BC), the biotin carboxyl carrier protein (BCCP) and the carboxyl transferase (CT). Previous data showed that both bacterial and plant BCCP interact with signal transduction proteins belonging to the PII family. Here we show that the GlnB paralogues of the PII proteins from E. coli and Azospirillum brasiliense, but not the GlnK paralogues, can specifically form a ternary complex with the BC-BCCP components of ACC. This interaction results in ACC inhibition by decreasing the enzyme turnover number. Both the BC-BCCP-GlnB interaction and ACC inhibition were relieved by 2-oxoglutarate and by GlnB uridylylation. We propose that the GlnB protein acts as a 2-oxoglutarate-sensitive dissociable regulatory subunit of ACC in Bacteria.
[Mh] Termos MeSH primário: Acetil-CoA Carboxilase/genética
Acetil-CoA Carboxilase/metabolismo
Azospirillum brasilense/metabolismo
Proteínas de Bactérias/metabolismo
Proteínas de Escherichia coli/metabolismo
Escherichia coli/metabolismo
Ácidos Graxos/biossíntese
Proteínas PII Reguladoras de Nitrogênio/metabolismo
[Mh] Termos MeSH secundário: Azospirillum brasilense/genética
Carbono-Nitrogênio Ligases/metabolismo
Carboxil e Carbamoil Transferases/metabolismo
Escherichia coli/genética
Proteínas de Escherichia coli/genética
Ácido Graxo Sintase Tipo II/genética
Ácido Graxo Sintase Tipo II/metabolismo
Nucleotidiltransferases/genética
Nucleotidiltransferases/metabolismo
Proteínas PII Reguladoras de Nitrogênio/genética
Transdução de Sinais
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Escherichia coli Proteins); 0 (Fatty Acids); 0 (GlnB protein, E coli); 0 (PII Nitrogen Regulatory Proteins); 57657-57-5 (PIID regulatory protein, Bacteria); EC 2.1.3.- (Carboxyl and Carbamoyl Transferases); EC 2.7.7 (glnK protein, E coli); EC 2.7.7.- (Nucleotidyltransferases); EC 6.- (Fatty Acid Synthase, Type II); EC 6.3.- (Carbon-Nitrogen Ligases); EC 6.3.4.14 (biotin carboxylase); EC 6.4.1.2 (Acetyl-CoA Carboxylase); EC 6.4.1.2 (biotin carboxyl carrier protein)
[Em] Mês de entrada:1512
[Cu] Atualização por classe:150311
[Lr] Data última revisão:
150311
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:150106
[St] Status:MEDLINE
[do] DOI:10.1111/mmi.12912



página 1 de 19 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde