Base de dados : MEDLINE
Pesquisa : D08.811.913.555.500.925 [Categoria DeCS]
Referências encontradas : 1073 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 108 ir para página                         

  1 / 1073 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
[PMID]:29372795
[Au] Autor:Khodyrev DS; Nikitin AG; Brovkin AN; Lavrikova EY; Lebedeva NO; Vikulova OK; Shamhalova MS; Shestakova MV; Mayorov MY; Potapov VA; Nosikov VV; Averyanov AV
[Ti] Título:[The analysis of association between type 2 diabetes and polymorphic markers in the CDKAL1 gene and in the HHEX/IDE locus].
[So] Source:Genetika;52(11):1318-26, 2016 Nov.
[Is] ISSN:0016-6758
[Cp] País de publicação:Russia (Federation)
[La] Idioma:rus
[Ab] Resumo:The increase in diabetes was noted at the turn of the 21st century. Patients with type 2 diabetes (T2DM) make up the majority of patients. Diabetes is a multifactorial disease. It arises from adverse effects of environmental factors on the body of genetically susceptible peoples. According to modern concepts, T2DM is a polygenic disease. Each of the involved genes contributes to the risk of developing of this disease. In our study, the association between polymorphic genetic markers rs7756992, rs9465871, rs7754840, and rs10946398 in the CDKAL1 gene and rs1111875 in the HHEX/IDE locus and T2DM in the Russian population were studied. Four hundred forty patients with type 2 diabetes and 264 healthy individuals without any signs of the disease were examined. The comparative analysis of distribution of genotypes and allele frequencies points to an association between polymorphic genetic markers rs7756992, rs9465871, and rs10946398 in the CDKAL1 gene and this disease. For the other polymorphic genetic markers (rs7754840 in the CDKAL1 gene and rs1111875 in the HHEX/IDE locus), no statistically significant associations are found. On the basis of these data, we can conclude that the CDKAL1 gene is associated with development of T2DM. For the HHEX/IDE locus, such an association is absent.
[Mh] Termos MeSH primário: Diabetes Mellitus Tipo 2/genética
Loci Gênicos
Proteínas de Homeodomínio/genética
Polimorfismo Genético
Fatores de Transcrição/genética
tRNA Metiltransferases/genética
[Mh] Termos MeSH secundário: Feminino
Marcadores Genéticos
Seres Humanos
Masculino
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Genetic Markers); 0 (HHEX protein, human); 0 (Homeodomain Proteins); 0 (Transcription Factors); EC 2.1.1.- (tRNA Methyltransferases); EC 2.8.4.5 (CDKAL1 protein, human)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180205
[Lr] Data última revisão:
180205
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180127
[St] Status:MEDLINE


  2 / 1073 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28993285
[Au] Autor:Lu K; Chen X; Li W; Li Y; Zhang Z; Zhou Q
[Ad] Endereço:College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
[Ti] Título:Insulin-like peptides and DNA/tRNA methyltransferases are involved in the nutritional regulation of female reproduction in Nilaparvata lugens (Stål).
[So] Source:Gene;639:96-105, 2018 Jan 10.
[Is] ISSN:1879-0038
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:Insulin-like peptides (ILPs) sense and transduce nutritional information and are linked to female reproduction in many insect species. Our previous studies have shown that "Target of rapamycin" (TOR) pathway functions through juvenile hormone (JH) to regulate amino acids-mediated vitellogenesis in the brown planthopper, Nilaparvata lugens, one of the most destructive rice pests in Asia. Recent reports have demonstrated that DNA methyltransferases (Dnmts) are also involved in female reproduction of N. lugens. However, the roles of ILPs and Dnmts in the nutritional regulation of female reproduction have not been fully elucidated. ILPs and Dnmts are highly expressed in the adult females after a supplement of amino acids, indicating nutrition-stimulated expression patterns of these genes. RNA interference-mediated depletion of NlILP2 or NlILP4 dramatically decreased the expression levels of NlDnmt1 and NlDnmt2 (tRNA methyltransferase), and resulted in severely impaired ovary growth as well as the substantial reduction of fecundity. Notably, NlILP2 or NlILP4 knockdown led to reduced mRNA accumulation of S6 kinase (S6K), a downstream target of the nutritional TOR pathway, and decreased vitellogenin content in the fat body. Silencing NlDnmt1 or NlDnmt2 effectively suppressed ovary development and decreased female fecundity. However, NlDnmt1 or NlDnmt2 knockdown did not influence the expression of NlILP2 and NlILP4. We infer that amino acids act on ILPs and Dnmts to regulate vitellogenesis and oocyte maturation in N. lugens.
[Mh] Termos MeSH primário: Metilases de Modificação do DNA/metabolismo
Hemípteros/fisiologia
Insulina/fisiologia
Peptídeos/fisiologia
tRNA Metiltransferases/metabolismo
[Mh] Termos MeSH secundário: Animais
Metilases de Modificação do DNA/genética
Feminino
Regulação da Expressão Gênica no Desenvolvimento
Regulação Enzimológica da Expressão Gênica
Inativação Gênica
Insulina/química
Interferência de RNA
Reprodução
tRNA Metiltransferases/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Insulin); 0 (Peptides); EC 2.1.1.- (DNA Modification Methylases); EC 2.1.1.- (tRNA Methyltransferases)
[Em] Mês de entrada:1712
[Cu] Atualização por classe:171227
[Lr] Data última revisão:
171227
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171011
[St] Status:MEDLINE


  3 / 1073 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29198561
[Au] Autor:Chou HJ; Donnard E; Gustafsson HT; Garber M; Rando OJ
[Ad] Endereço:Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
[Ti] Título:Transcriptome-wide Analysis of Roles for tRNA Modifications in Translational Regulation.
[So] Source:Mol Cell;68(5):978-992.e4, 2017 Dec 07.
[Is] ISSN:1097-4164
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Covalent nucleotide modifications in noncoding RNAs affect a plethora of biological processes, and new functions continue to be discovered even for well-known modifying enzymes. To systematically compare the functions of a large set of noncoding RNA modifications in gene regulation, we carried out ribosome profiling in budding yeast to characterize 57 nonessential genes involved in tRNA modification. Deletion mutants exhibited a range of translational phenotypes, with enzymes known to modify anticodons, or non-tRNA substrates such as rRNA, exhibiting the most dramatic translational perturbations. Our data build on prior reports documenting translational upregulation of the nutrient-responsive transcription factor Gcn4 in response to numerous tRNA perturbations, and identify many additional translationally regulated mRNAs throughout the yeast genome. Our data also uncover unexpected roles for tRNA-modifying enzymes in regulation of TY retroelements, and in rRNA 2'-O-methylation. This dataset should provide a rich resource for discovery of additional links between tRNA modifications and gene regulation.
[Mh] Termos MeSH primário: RNA Fúngico/metabolismo
RNA de Transferência/metabolismo
Ribossomos/enzimologia
Proteínas de Saccharomyces cerevisiae/metabolismo
Saccharomyces cerevisiae/enzimologia
Transcriptoma
tRNA Metiltransferases/metabolismo
[Mh] Termos MeSH secundário: Fatores de Transcrição de Zíper de Leucina Básica/biossíntese
Fatores de Transcrição de Zíper de Leucina Básica/genética
Perfilação da Expressão Gênica/métodos
Regulação Fúngica da Expressão Gênica
Genótipo
Metilação
Mutação
Fenótipo
RNA Fúngico/genética
RNA Mensageiro/genética
RNA Mensageiro/metabolismo
RNA Ribossômico/genética
RNA Ribossômico/metabolismo
RNA de Transferência/genética
RNA não Traduzido/genética
RNA não Traduzido/metabolismo
Retroelementos
Ribossomos/genética
Saccharomyces cerevisiae/genética
Proteínas de Saccharomyces cerevisiae/biossíntese
Proteínas de Saccharomyces cerevisiae/genética
Sequências Repetidas Terminais
tRNA Metiltransferases/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Basic-Leucine Zipper Transcription Factors); 0 (GCN4 protein, S cerevisiae); 0 (RNA, Fungal); 0 (RNA, Messenger); 0 (RNA, Ribosomal); 0 (RNA, Untranslated); 0 (Retroelements); 0 (Saccharomyces cerevisiae Proteins); 9014-25-9 (RNA, Transfer); EC 2.1.1.- (Trm7 protein, S cerevisiae); EC 2.1.1.- (tRNA Methyltransferases)
[Em] Mês de entrada:1712
[Cu] Atualização por classe:171226
[Lr] Data última revisão:
171226
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171205
[St] Status:MEDLINE


  4 / 1073 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28911116
[Au] Autor:Krishnamohan A; Jackman JE
[Ad] Endereço:The Ohio State Biochemistry Program, Center for RNA Biology, and Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
[Ti] Título:Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10.
[So] Source:Nucleic Acids Res;45(15):9019-9029, 2017 Sep 06.
[Is] ISSN:1362-4962
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The tRNA m1G9 methyltransferase (Trm10) is a member of the SpoU-TrmD (SPOUT) superfamily of methyltransferases, and Trm10 homologs are widely conserved throughout Eukarya and Archaea. Despite possessing the trefoil knot characteristic of SPOUT enzymes, Trm10 does not share the same quaternary structure or key sequences with other members of the SPOUT family, suggesting a novel mechanism of catalysis. To investigate the mechanism of m1G9 methylation by Trm10, we performed a biochemical and kinetic analysis of Trm10 and variants with alterations in highly conserved residues, using crystal structures solved in the absence of tRNA as a guide. Here we demonstrate that a previously proposed general base residue (D210 in Saccharomyces cerevisiae Trm10) is not likely to play this suggested role in the chemistry of methylation. Instead, pH-rate analysis suggests that D210 and other conserved carboxylate-containing residues at the active site collaborate to establish an active site environment that promotes a single ionization that is required for catalysis. Moreover, Trm10 does not depend on a catalytic metal ion, further distinguishing it from the other known SPOUT m1G methyltransferase, TrmD. These results provide evidence for a non-canonical tRNA methyltransferase mechanism that characterizes the Trm10 enzyme family.
[Mh] Termos MeSH primário: Ácido Aspártico/química
RNA de Transferência/química
S-Adenosilmetionina/química
Proteínas de Saccharomyces cerevisiae/química
Saccharomyces cerevisiae/enzimologia
tRNA Metiltransferases/química
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Ácido Aspártico/metabolismo
Sítios de Ligação
Biocatálise
Domínio Catalítico
Clonagem Molecular
Cristalografia por Raios X
Escherichia coli/genética
Escherichia coli/metabolismo
Expressão Gênica
Concentração de Íons de Hidrogênio
Isoenzimas/química
Isoenzimas/genética
Isoenzimas/metabolismo
Cinética
Metilação
Modelos Moleculares
Ligação Proteica
Conformação Proteica em alfa-Hélice
Domínios e Motivos de Interação entre Proteínas
RNA de Transferência/metabolismo
Proteínas Recombinantes/química
Proteínas Recombinantes/genética
Proteínas Recombinantes/metabolismo
S-Adenosil-Homocisteína/química
S-Adenosil-Homocisteína/metabolismo
S-Adenosilmetionina/metabolismo
Saccharomyces cerevisiae/genética
Proteínas de Saccharomyces cerevisiae/genética
Proteínas de Saccharomyces cerevisiae/metabolismo
Alinhamento de Sequência
Homologia de Sequência de Aminoácidos
Especificidade por Substrato
tRNA Metiltransferases/genética
tRNA Metiltransferases/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Isoenzymes); 0 (Recombinant Proteins); 0 (Saccharomyces cerevisiae Proteins); 30KYC7MIAI (Aspartic Acid); 7LP2MPO46S (S-Adenosylmethionine); 9014-25-9 (RNA, Transfer); 979-92-0 (S-Adenosylhomocysteine); EC 2.1.1.- (TRM10 protein, S cerevisiae); EC 2.1.1.- (tRNA Methyltransferases)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171114
[Lr] Data última revisão:
171114
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170916
[St] Status:MEDLINE
[do] DOI:10.1093/nar/gkx620


  5 / 1073 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28784718
[Au] Autor:Dewe JM; Fuller BL; Lentini JM; Kellner SM; Fu D
[Ad] Endereço:Department of Biology, Center for RNA Biology, University of Rochester, Rochester, New York, USA.
[Ti] Título:TRMT1-Catalyzed tRNA Modifications Are Required for Redox Homeostasis To Ensure Proper Cellular Proliferation and Oxidative Stress Survival.
[So] Source:Mol Cell Biol;37(21), 2017 Nov 01.
[Is] ISSN:1098-5549
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Mutations in the tRNA methyltransferase 1 ( ) gene have been identified as the cause of certain forms of autosomal-recessive intellectual disability (ID). However, the molecular pathology underlying ID-associated TRMT1 mutations is unknown, since the biological role of the encoded TRMT1 protein remains to be determined. Here, we have elucidated the molecular targets and function of TRMT1 to uncover the cellular effects of ID-causing TRMT1 mutations. Using human cells that have been rendered deficient in TRMT1, we show that TRMT1 is responsible for catalyzing the dimethylguanosine (m2,2G) base modification in both nucleus- and mitochondrion-encoded tRNAs. TRMT1-deficient cells exhibit decreased proliferation rates, alterations in global protein synthesis, and perturbations in redox homeostasis, including increased endogenous ROS levels and hypersensitivity to oxidizing agents. Notably, ID-causing TRMT1 variants are unable to catalyze the formation of m2,2G due to defects in RNA binding and cannot rescue oxidative stress sensitivity. Our results uncover a biological role for TRMT1-catalyzed tRNA modification in redox metabolism and show that individuals with TRMT1-associated ID are likely to have major perturbations in cellular homeostasis due to the lack of m2,2G modifications.
[Mh] Termos MeSH primário: Guanosina/análogos & derivados
Deficiência Intelectual/genética
RNA de Transferência/metabolismo
tRNA Metiltransferases/genética
tRNA Metiltransferases/metabolismo
[Mh] Termos MeSH secundário: Catálise
Proliferação Celular
Sobrevivência Celular
Guanosina/metabolismo
Células HEK293
Células HeLa
Homeostase
Seres Humanos
Mutação
Oxirredução
Estresse Oxidativo
Espécies Reativas de Oxigênio/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (8-methylguanosine); 0 (Reactive Oxygen Species); 12133JR80S (Guanosine); 9014-25-9 (RNA, Transfer); EC 2.1.1.- (TRMT1 protein, human); EC 2.1.1.- (tRNA Methyltransferases)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171111
[Lr] Data última revisão:
171111
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170809
[St] Status:MEDLINE


  6 / 1073 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28732077
[Au] Autor:Navarro-González C; Moukadiri I; Villarroya M; López-Pascual E; Tuck S; Armengod ME
[Ad] Endereço:Modificación del RNA y Enfermedades Mitocondriales, Centro de Investigación Príncipe Felipe, Valencia, Spain.
[Ti] Título:Mutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses.
[So] Source:PLoS Genet;13(7):e1006921, 2017 Jul.
[Is] ISSN:1553-7404
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Several oxidative phosphorylation (OXPHOS) diseases are caused by defects in the post-transcriptional modification of mitochondrial tRNAs (mt-tRNAs). Mutations in MTO1 or GTPBP3 impair the modification of the wobble uridine at position 5 of the pyrimidine ring and cause heart failure. Mutations in TRMU affect modification at position 2 and cause liver disease. Presently, the molecular basis of the diseases and why mutations in the different genes lead to such different clinical symptoms is poorly understood. Here we use Caenorhabditis elegans as a model organism to investigate how defects in the TRMU, GTPBP3 and MTO1 orthologues (designated as mttu-1, mtcu-1, and mtcu-2, respectively) exert their effects. We found that whereas the inactivation of each C. elegans gene is associated with a mild OXPHOS dysfunction, mutations in mtcu-1 or mtcu-2 cause changes in the expression of metabolic and mitochondrial stress response genes that are quite different from those caused by mttu-1 mutations. Our data suggest that retrograde signaling promotes defect-specific metabolic reprogramming, which is able to rescue the OXPHOS dysfunction in the single mutants by stimulating the oxidative tricarboxylic acid cycle flux through complex II. This adaptive response, however, appears to be associated with a biological cost since the single mutant worms exhibit thermosensitivity and decreased fertility and, in the case of mttu-1, longer reproductive cycle. Notably, mttu-1 worms also exhibit increased lifespan. We further show that mtcu-1; mttu-1 and mtcu-2; mttu-1 double mutants display severe growth defects and sterility. The animal models presented here support the idea that the pathological states in humans may initially develop not as a direct consequence of a bioenergetic defect, but from the cell's maladaptive response to the hypomodification status of mt-tRNAs. Our work highlights the important association of the defect-specific metabolic rewiring with the pathological phenotype, which must be taken into consideration in exploring specific therapeutic interventions.
[Mh] Termos MeSH primário: Proteínas de Caenorhabditis elegans/genética
Proteínas de Transporte/genética
Proteínas de Ligação ao GTP/genética
Mitocôndrias/genética
Doenças Mitocondriais/genética
Proteínas Mitocondriais/genética
tRNA Metiltransferases/genética
[Mh] Termos MeSH secundário: Animais
Caenorhabditis elegans/genética
Nucléolo Celular/genética
Modelos Animais de Doenças
Transporte de Elétrons/genética
Expressão Gênica/genética
Seres Humanos
Mitocôndrias/metabolismo
Doenças Mitocondriais/metabolismo
Mutação
Fosforilação Oxidativa
RNA de Transferência/genética
Transdução de Sinais/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Caenorhabditis elegans Proteins); 0 (Carrier Proteins); 0 (MTCU-1 protein, C elegans); 0 (MTCU-2 protein, C elegans); 0 (MTO1 protein, human); 0 (Mitochondrial Proteins); 9014-25-9 (RNA, Transfer); EC 2.1.1.- (MTTU-1 protein, C elegans); EC 2.1.1.- (tRNA Methyltransferases); EC 2.1.1.61 (TRMU protein, human); EC 3.6.1.- (GTP-Binding Proteins); EC 3.6.1.- (GTPBP3 protein, human)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170822
[Lr] Data última revisão:
170822
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170722
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pgen.1006921


  7 / 1073 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28714971
[Au] Autor:Lengefeld J; Hotz M; Rollins M; Baetz K; Barral Y
[Ad] Endereço:Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland.
[Ti] Título:Budding yeast Wee1 distinguishes spindle pole bodies to guide their pattern of age-dependent segregation.
[So] Source:Nat Cell Biol;19(8):941-951, 2017 Aug.
[Is] ISSN:1476-4679
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Many asymmetrically dividing cells unequally partition cellular structures according to age. Yet, it is unclear how cells differentiate pre-existing from newly synthesized material. Yeast cells segregate the spindle pole body (SPB, centrosome equivalent) inherited from the previous mitosis to the bud, while keeping the new one in the mother cell. Here, we show that the SPB inheritance network (SPIN), comprising the kinases Swe1 (also known as Wee1) and Kin3 (also known as Nek2) and the acetyltransferase NuA4 (also known as Tip60), distinguishes pre-existing from new SPBs. Swe1 phosphorylated Nud1 (orthologous to Centriolin) on young SPBs as they turned into pre-existing ones. The subsequent inactivation of Swe1 protected newly assembling SPBs from being marked. Kin3 and NuA4 maintained age marks on SPBs through following divisions. Downstream of SPIN, the Hippo regulator Bfa1-Bub2 bound the marked SPB, directed the spindle-positioning protein Kar9 towards it and drove its partition to the bud. Thus, coordination of SPIN activity and SPB assembly encodes age onto SPBs to enable their age-dependent segregation.
[Mh] Termos MeSH primário: Proteínas de Ciclo Celular/metabolismo
Segregação de Cromossomos
Cromossomos Fúngicos
Proteínas Tirosina Quinases/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
Saccharomyces cerevisiae/metabolismo
Fuso Acromático/metabolismo
[Mh] Termos MeSH secundário: Proteínas de Ciclo Celular/genética
Proliferação Celular
Proteínas do Citoesqueleto/genética
Proteínas do Citoesqueleto/metabolismo
Desoxirribonucleases/genética
Desoxirribonucleases/metabolismo
Fase G1
Regulação Fúngica da Expressão Gênica
Histona Acetiltransferases/genética
Histona Acetiltransferases/metabolismo
Metáfase
Proteínas Nucleares/genética
Proteínas Nucleares/metabolismo
Fosforilação
Proteínas Serina-Treonina Quinases/genética
Proteínas Serina-Treonina Quinases/metabolismo
Proteínas Tirosina Quinases/genética
Saccharomyces cerevisiae/genética
Saccharomyces cerevisiae/crescimento & desenvolvimento
Proteínas de Saccharomyces cerevisiae/genética
Transdução de Sinais
Fatores de Tempo
tRNA Metiltransferases/genética
tRNA Metiltransferases/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (BFA1 protein, S cerevisiae); 0 (BUB2 protein, S cerevisiae); 0 (Cell Cycle Proteins); 0 (Cytoskeletal Proteins); 0 (KAR9 protein, S cerevisiae); 0 (Nuclear Proteins); 0 (Saccharomyces cerevisiae Proteins); EC 2.1.1.- (tRNA Methyltransferases); EC 2.3.1.48 (Histone Acetyltransferases); EC 2.3.1.48 (NuA4 protein, S cerevisiae); EC 2.7.1.- (SWE1 protein, S cerevisiae); EC 2.7.10.1 (Protein-Tyrosine Kinases); EC 2.7.11.1 (KIN3 protein, S cerevisiae); EC 2.7.11.1 (Protein-Serine-Threonine Kinases); EC 3.1.- (Deoxyribonucleases); EC 3.1.- (TRM2 protein, S cerevisiae)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170921
[Lr] Data última revisão:
170921
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170718
[St] Status:MEDLINE
[do] DOI:10.1038/ncb3576


  8 / 1073 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28544464
[Au] Autor:Pang P; Deng X; Wang Z; Xie W
[Ad] Endereço:School of Pharmaceutical Sciences, The Sun Yat-Sen University, Guangzhou, China.
[Ti] Título:Structural and biochemical insights into the 2'-O-methylation of pyrimidines 34 in tRNA.
[So] Source:FEBS J;284(14):2251-2263, 2017 Jul.
[Is] ISSN:1742-4658
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:tRNA molecules undergo extensive modifications during their maturation and these modifications play important cellular roles. TrmL is a tRNA-modification enzyme that catalyzes the transfer of a methyl group to the 2'-hydroxyl group of the pyrimidines at the wobble position 34 in two tRNA isoacceptors, but the mechanism remains elusive. In this study, we determined the crystal structure of TrmL from Thermus thermophilus (TtTrmL) to 1.7 Å. The enzyme contains only the conserved minimal SPOUT fold, but displays distinct biochemical behavior from its Escherichia coli counterpart, EcTrmL. Interestingly, a fortuitous ligand of 5'-methylthioadenosine was consistently found at the SAM-binding pocket in the crystal structures, which probably came from the expression host. Both TtTrmL and EcTrmL were capable of methylating each other's tRNA substrates, but the latter exhibited much higher activity than the former. Enzymatic activity assays showed that the reaction catalyzed by TtTrmL greatly depends on the reaction pH and is also affected by salt concentration. Via sequence alignment and structural superposition, we discovered that a universally conserved glutamate residue is likely to fulfill the role of the general base for the initial proton abstraction from the 2'-hydroxyl group of pyrimidines 34. Lastly, based on our structural and biochemical data, we proposed the dimer interface to be the tRNA-binding site for TtTrmL. DATABASE: The atomic coordinates and structural factors have been deposited in the Protein Data Bank with accession number 5CO4.
[Mh] Termos MeSH primário: Pirimidinas/química
RNA de Transferência de Leucina/química
RNA de Transferência de Leucina/metabolismo
Thermus thermophilus/enzimologia
tRNA Metiltransferases/química
tRNA Metiltransferases/metabolismo
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Sítios de Ligação
Catálise
Cristalografia por Raios X
Desoxiadenosinas/química
Desoxiadenosinas/metabolismo
Escherichia coli/enzimologia
Proteínas de Escherichia coli/química
Proteínas de Escherichia coli/metabolismo
Metilação
Metiltransferases/química
Metiltransferases/metabolismo
Modelos Moleculares
Conformação Proteica
S-Adenosilmetionina/química
S-Adenosilmetionina/metabolismo
Especificidade por Substrato
Tionucleosídeos/química
Tionucleosídeos/metabolismo
[Pt] Tipo de publicação:COMPARATIVE STUDY; JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Deoxyadenosines); 0 (Escherichia coli Proteins); 0 (Pyrimidines); 0 (RNA, Transfer, Leu); 0 (Thionucleosides); 634Z2VK3UQ (5'-methylthioadenosine); 7LP2MPO46S (S-Adenosylmethionine); EC 2.1.1.- (Methyltransferases); EC 2.1.1.- (TrmL protein, E coli); EC 2.1.1.- (tRNA Methyltransferases)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170926
[Lr] Data última revisão:
170926
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170526
[St] Status:MEDLINE
[do] DOI:10.1111/febs.14120


  9 / 1073 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28531330
[Au] Autor:Liu RJ; Long T; Li J; Li H; Wang ED
[Ad] Endereço:State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.
[Ti] Título:Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6.
[So] Source:Nucleic Acids Res;45(11):6684-6697, 2017 Jun 20.
[Is] ISSN:1362-4962
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:5-methylcytosine (m5C) modifications of RNA are ubiquitous in nature and play important roles in many biological processes such as protein translational regulation, RNA processing and stress response. Aberrant expressions of RNA:m5C methyltransferases are closely associated with various human diseases including cancers. However, no structural information for RNA-bound RNA:m5C methyltransferase was available until now, hindering elucidation of the catalytic mechanism behind RNA:m5C methylation. Here, we have solved the structures of NSun6, a human tRNA:m5C methyltransferase, in the apo form and in complex with a full-length tRNA substrate. These structures show a non-canonical conformation of the bound tRNA, rendering the base moiety of the target cytosine accessible to the enzyme for methylation. Further biochemical assays reveal the critical, but distinct, roles of two conserved cysteine residues for the RNA:m5C methylation. Collectively, for the first time, we have solved the complex structure of a RNA:m5C methyltransferase and addressed the catalytic mechanism of the RNA:m5C methyltransferase family, which may allow for structure-based drug design toward RNA:m5C methyltransferase-related diseases.
[Mh] Termos MeSH primário: tRNA Metiltransferases/química
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Apoenzimas/química
Biocatálise
Domínio Catalítico
Sequência Conservada
Cristalografia por Raios X
Seres Humanos
Ligações de Hidrogênio
Modelos Moleculares
Ligação Proteica
Conformação Proteica em alfa-Hélice
RNA de Transferência/química
Especificidade por Substrato
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Apoenzymes); 9014-25-9 (RNA, Transfer); EC 2.1.1.- (NSUN6 protein, human); EC 2.1.1.- (tRNA Methyltransferases)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171107
[Lr] Data última revisão:
171107
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170523
[St] Status:MEDLINE
[do] DOI:10.1093/nar/gkx473


  10 / 1073 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28506829
[Au] Autor:Gu DH; Park MY; Kim JS
[Ad] Endereço:Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea.
[Ti] Título:An asymmetric dimeric structure of TrmJ tRNA methyltransferase from Zymomonas mobilis with a flexible C-terminal dimer.
[So] Source:Biochem Biophys Res Commun;488(2):407-412, 2017 Jun 24.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The tRNA methyltransferase J (TrmJ) and D (TrmD) catalyze the transferring reaction of a methyl group to the tRNA anticodon loop. They commonly have the N-terminal domain (NTD) and the C-terminal domain (CTD). Whereas two monomeric CTDs symmetrically interact with a dimeric NTD in TrmD, a CTD dimer has exhibited an asymmetric interaction with the NTD dimer in the presence of a product. The elucidated apo-structure of the full-length TrmJ from Zymomonas mobilis ZM4 shows a dimeric CTD that asymmetrically interacts with the NTD dimer, thereby distributing non-symmetrical potential charge on the both side of the protein surface. Comparison with the product-bound structures reveals a local re-orientation of the two arginine-containing loop at the active site, which interacts with the product. Further, the CTD dimers have diverse orientations compared to the NTD dimers, suggesting their flexibility. These data indicate that an asymmetric interaction between the NTD dimer and the CTD dimer is a common structural feature among TrmJ proteins, regardless of the presence of a substrate or a product.
[Mh] Termos MeSH primário: Zymomonas/enzimologia
tRNA Metiltransferases/química
[Mh] Termos MeSH secundário: Dimerização
Modelos Moleculares
tRNA Metiltransferases/genética
tRNA Metiltransferases/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
EC 2.1.1.- (tRNA Methyltransferases)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170921
[Lr] Data última revisão:
170921
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170517
[St] Status:MEDLINE



página 1 de 108 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde