Base de dados : MEDLINE
Pesquisa : D08.811.913.696.445.735 [Categoria DeCS]
Referências encontradas : 3283 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 329 ir para página                         

  1 / 3283 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28671666
[Au] Autor:Faehnle CR; Walleshauser J; Joshua-Tor L
[Ad] Endereço:W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
[Ti] Título:Multi-domain utilization by TUT4 and TUT7 in control of let-7 biogenesis.
[So] Source:Nat Struct Mol Biol;24(8):658-665, 2017 Aug.
[Is] ISSN:1545-9985
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The uridyl transferases TUT4 and TUT7 (collectively called TUT4(7)) switch between two modes of activity, either promoting expression of let-7 microRNA (monoU) or marking it for degradation (oligoU). Lin28 modulates the switch via recruitment of TUT4(7) to the precursor pre-let-7 in stem cells and human cancers. We found that TUT4(7) utilize two multidomain functional modules during the switch from monoU to oligoU. The catalytic module (CM) is essential for both activities, while the Lin28-interacting module (LIM) is indispensable for oligoU. A TUT7 CM structure trapped in the monoU activity staterevealed a duplex-RNA-binding pocket that orients group II pre-let-7 hairpins to favor monoU addition. Conversely, the switch to oligoU requires the ZK domain of Lin28 to drive the formation of a stable ternary complex between pre-let-7 and the inactive LIM. Finally, ZK2 of TUT4(7) aids oligoU addition by engaging the growing oligoU tail through uracil-specific interactions.
[Mh] Termos MeSH primário: Proteínas de Ligação a DNA/química
Proteínas de Ligação a DNA/metabolismo
MicroRNAs/biossíntese
RNA Nucleotidiltransferases/química
RNA Nucleotidiltransferases/metabolismo
[Mh] Termos MeSH secundário: Domínio Catalítico
Seres Humanos
MicroRNAs/química
Modelos Biológicos
Modelos Moleculares
Ligação Proteica
Conformação Proteica
Domínios e Motivos de Interação entre Proteínas
Proteínas de Ligação a RNA/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (DNA-Binding Proteins); 0 (LIN-28 protein, human); 0 (MicroRNAs); 0 (RNA-Binding Proteins); 0 (ZCCHC11 protein, human); 0 (mirnlet7 microRNA, human); EC 2.7.7.- (RNA Nucleotidyltransferases); EC 2.7.7.- (Zcchc6 protein, human)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:171017
[Lr] Data última revisão:
171017
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170704
[St] Status:MEDLINE
[do] DOI:10.1038/nsmb.3428


  2 / 3283 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28665939
[Au] Autor:Kozlowski E; Wasserman GA; Morgan M; O'Carroll D; Ramirez NP; Gummuluru S; Rah JY; Gower AC; Ieong M; Quinton LJ; Mizgerd JP; Jones MR
[Ad] Endereço:Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America.
[Ti] Título:The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses.
[So] Source:PLoS One;12(6):e0179797, 2017.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Alveolar macrophages orchestrate pulmonary innate immunity and are essential for early immune surveillance and clearance of microorganisms in the airways. Inflammatory signaling must be sufficiently robust to promote host defense but limited enough to prevent excessive tissue injury. Macrophages in the lungs utilize multiple transcriptional and post-transcriptional mechanisms of inflammatory gene expression to delicately balance the elaboration of immune mediators. RNA terminal uridyltransferases (TUTs), including the closely homologous family members Zcchc6 (TUT7) and Zcchc11 (TUT4), have been implicated in the post-transcriptional regulation of inflammation from studies conducted in vitro. In vivo, we observed that Zcchc6 is expressed in mouse and human primary macrophages. Zcchc6-deficient mice are viable and born in Mendelian ratios and do not exhibit an observable spontaneous phenotype under basal conditions. Following an intratracheal challenge with S. pneumoniae, Zcchc6 deficiency led to a modest but significant increase in the expression of select cytokines including IL-6, CXCL1, and CXCL5. These findings were recapitulated in vitro whereby Zcchc6-deficient macrophages exhibited similar increases in cytokine expression due to bacterial stimulation. Although loss of Zcchc6 also led to increased neutrophil emigration to the airways during pneumonia, these responses were not sufficient to impact host defense against infection.
[Mh] Termos MeSH primário: Imunidade Inata/fisiologia
Macrófagos Alveolares/enzimologia
RNA Nucleotidiltransferases/metabolismo
[Mh] Termos MeSH secundário: Animais
Líquido da Lavagem Broncoalveolar
Células Cultivadas
Seres Humanos
Camundongos
Camundongos Endogâmicos C57BL
Camundongos Knockout
Camundongos Transgênicos
Pneumonia Bacteriana/imunologia
RNA Nucleotidiltransferases/genética
RNA Nucleotidiltransferases/fisiologia
Streptococcus pneumoniae/patogenicidade
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
EC 2.7.7.- (RNA Nucleotidyltransferases); EC 2.7.7.- (Zcchc6 protein, human)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171011
[Lr] Data última revisão:
171011
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170701
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0179797


  3 / 3283 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28504715
[Au] Autor:Han B; Park HK; Ching T; Panneerselvam J; Wang H; Shen Y; Zhang J; Li L; Che R; Garmire L; Fei P
[Ad] Endereço:Division of Cancer Biology, University of Hawaii Cancer Center, Honolulu, HI, USA.
[Ti] Título:Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development.
[So] Source:Oncogene;36(38):5382-5391, 2017 Sep 21.
[Is] ISSN:1476-5594
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The contribution of RNA processing to tumorigenesis is understudied. Here, we report that the human RNA debranching enzyme (hDBR1), when inappropriately regulated, induces oncogenesis by causing RNA processing defects, for example, splicing defects. We found that wild-type p53 and hypoxia-inducible factor 1 co-regulate hDBR1 expression, and insufficient hDBR1 leads to a higher rate of exon skipping. Transcriptomic sequencing confirmed the effect of hDBR1 on RNA splicing, and metabolite profiling supported the observation that neoplasm is triggered by a decrease in hDBR1 expression both in vitro and in vivo. Most importantly, when modulating the expression of hDBR1, which was found to be generally low in malignant human tissues, higher expression of hDBR1 only affected exon-skipping activity in malignant cells. Together, our findings demonstrate previously unrecognized regulation and functions of hDBR1, with immediate clinical implications regarding the regulation of hDBR1 as an effective strategy for combating human cancer.
[Mh] Termos MeSH primário: Neoplasias/genética
RNA Nucleotidiltransferases/biossíntese
Ribonucleoproteínas Nucleares Pequenas/metabolismo
[Mh] Termos MeSH secundário: Processamento Alternativo
Hipóxia Celular/fisiologia
Linhagem Celular Tumoral
Éxons
Seres Humanos
Fator 1 Induzível por Hipóxia/genética
Fator 1 Induzível por Hipóxia/metabolismo
Íntrons
Neoplasias/enzimologia
Neoplasias/metabolismo
RNA Nucleotidiltransferases/genética
RNA Nucleotidiltransferases/metabolismo
Processamento de RNA
Ribonucleoproteínas Nucleares Pequenas/genética
Proteína Supressora de Tumor p53/genética
Proteína Supressora de Tumor p53/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Hypoxia-Inducible Factor 1); 0 (Ribonucleoproteins, Small Nuclear); 0 (TP53 protein, human); 0 (Tumor Suppressor Protein p53); EC 2.7.7.- (Dbr1 protein, human); EC 2.7.7.- (RNA Nucleotidyltransferases)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171013
[Lr] Data última revisão:
171013
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170516
[St] Status:MEDLINE
[do] DOI:10.1038/onc.2017.150


  4 / 3283 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28504306
[Au] Autor:Ransey E; Paredes E; Dey SK; Das SR; Heroux A; Macbeth MR
[Ad] Endereço:Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
[Ti] Título:Crystal structure of the Entamoeba histolytica RNA lariat debranching enzyme EhDbr1 reveals a catalytic Zn /Mn heterobinucleation.
[So] Source:FEBS Lett;591(13):2003-2010, 2017 Jul.
[Is] ISSN:1873-3468
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The RNA lariat debranching enzyme, Dbr1, is a metallophosphoesterase that cleaves 2'-5' phosphodiester bonds within intronic lariats. Previous reports have indicated that Dbr1 enzymatic activity is supported by diverse metal ions including Ni , Mn , Mg , Fe , and Zn . While in initial structures of the Entamoeba histolytica Dbr1 only one of the two catalytic metal-binding sites were observed to be occupied (with a Mn ion), recent structures determined a Zn /Fe heterobinucleation. We solved a high-resolution X-ray crystal structure (1.8 Å) of the E. histolytica Dbr1 and determined a Zn /Mn occupancy. ICP-AES corroborate this finding, and in vitro debranching assays with fluorescently labeled branched substrates confirm activity.
[Mh] Termos MeSH primário: Biocatálise
Entamoeba histolytica/enzimologia
Manganês/metabolismo
RNA Nucleotidiltransferases/química
RNA Nucleotidiltransferases/metabolismo
Zinco/metabolismo
[Mh] Termos MeSH secundário: Domínio Catalítico
Cristalografia por Raios X
Modelos Moleculares
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
42Z2K6ZL8P (Manganese); EC 2.7.7.- (RNA Nucleotidyltransferases); EC 2.7.7.- (lariat debranching enzyme); J41CSQ7QDS (Zinc)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170818
[Lr] Data última revisão:
170818
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170516
[St] Status:MEDLINE
[do] DOI:10.1002/1873-3468.12677


  5 / 3283 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28383716
[Au] Autor:Shin J; Paek KY; Ivshina M; Stackpole EE; Richter JD
[Ad] Endereço:Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
[Ti] Título:Essential role for non-canonical poly(A) polymerase GLD4 in cytoplasmic polyadenylation and carbohydrate metabolism.
[So] Source:Nucleic Acids Res;45(11):6793-6804, 2017 Jun 20.
[Is] ISSN:1362-4962
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Regulation of gene expression at the level of cytoplasmic polyadenylation is important for many biological phenomena including cell cycle progression, mitochondrial respiration, and learning and memory. GLD4 is one of the non-canonical poly(A) polymerases that regulates cytoplasmic polyadenylation-induced translation, but its target mRNAs and role in cellular physiology is not well known. To assess the full panoply of mRNAs whose polyadenylation is controlled by GLD4, we performed an unbiased whole genome-wide screen using poy(U) chromatography and thermal elution. We identified hundreds of mRNAs regulated by GLD4, several of which are involved in carbohydrate metabolism including GLUT1, a major glucose transporter. Depletion of GLD4 not only reduced GLUT1 poly(A) tail length, but also GLUT1 protein. GLD4-mediated translational control of GLUT1 mRNA is dependent of an RNA binding protein, CPEB1, and its binding elements in the 3΄ UTR. Through regulating GLUT1 level, GLD4 affects glucose uptake into cells and lactate levels. Moreover, GLD4 depletion impairs glucose deprivation-induced GLUT1 up-regulation. In addition, we found that GLD4 affects glucose-dependent cellular phenotypes such as migration and invasion in glioblastoma cells. Our observations delineate a novel post-transcriptional regulatory network involving carbohydrate metabolism and glucose homeostasis mediated by GLD4.
[Mh] Termos MeSH primário: Metabolismo dos Carboidratos
Poliadenilação
RNA Nucleotidiltransferases/fisiologia
[Mh] Termos MeSH secundário: Sequência de Bases
Linhagem Celular Tumoral
Movimento Celular
Citoplasma/metabolismo
Regulação da Expressão Gênica
Transportador de Glucose Tipo 1/genética
Transportador de Glucose Tipo 1/metabolismo
Células HEK293
Homeostase
Seres Humanos
Biossíntese de Proteínas
RNA Mensageiro/metabolismo
Fatores de Transcrição/fisiologia
Fatores de Poliadenilação e Clivagem de mRNA/fisiologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (CPEB1 protein, human); 0 (Glucose Transporter Type 1); 0 (RNA, Messenger); 0 (SLC2A1 protein, human); 0 (Transcription Factors); 0 (mRNA Cleavage and Polyadenylation Factors); EC 2.7.7.- (RNA Nucleotidyltransferases); EC 2.7.7.- (TRF4-2 protein, human)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171107
[Lr] Data última revisão:
171107
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170407
[St] Status:MEDLINE
[do] DOI:10.1093/nar/gkx239


  6 / 3283 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28381521
[Au] Autor:Davis M; Montalbano A; Wood MP; Schisa JA
[Ad] Endereço:Department of Biology, Central Michigan University, Mount Pleasant, Michigan.
[Ti] Título:Biphasic adaptation to osmotic stress in the germ line.
[So] Source:Am J Physiol Cell Physiol;312(6):C741-C748, 2017 Jun 01.
[Is] ISSN:1522-1563
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Cells respond to environmental stress in multiple ways. In the germ line, heat shock and nutritive stress trigger the assembly of large ribonucleoprotein (RNP) granules via liquid-liquid phase separation (LLPS). The RNP granules are hypothesized to maintain the quality of oocytes during stress. The goal of this study was to investigate the cellular response to glucose in the germ line and determine if it is an osmotic stress response. We found that exposure to 500 mM glucose induces the assembly of RNP granules in the germ line within 1 h. Interestingly, the RNP granules are maintained for up to 3 h; however, they dissociate after longer periods of stress. The RNP granules include processing body and stress granule proteins, suggesting shared functions. Based on several lines of evidence, the germ line response to glucose largely appears to be an osmotic stress response, thus identifying osmotic stress as a trigger of LLPS. Although RNP granules are not maintained beyond 3 h of osmotic stress, the quality of oocytes does not appear to decrease after longer periods of stress, suggesting a secondary adaptation in the germ line. We used an indirect marker of glycerol and observed high levels after 5 and 20 h of glucose exposure. Moreover, in germ lines, glycerol levels are reduced concomitant with RNP granules being maintained for an extended period. We speculate that increased glycerol levels may function as a secondary osmoregulatory adaptive response in the germ line, following a primary response of RNP granule assembly.
[Mh] Termos MeSH primário: Adaptação Fisiológica
Caenorhabditis elegans/efeitos dos fármacos
Grânulos Citoplasmáticos/efeitos dos fármacos
Glucose/farmacologia
Oócitos/efeitos dos fármacos
Ribonucleoproteínas/genética
[Mh] Termos MeSH secundário: Animais
Caenorhabditis elegans/genética
Caenorhabditis elegans/metabolismo
Proteínas de Caenorhabditis elegans/genética
Proteínas de Caenorhabditis elegans/metabolismo
Sobrevivência Celular/efeitos dos fármacos
Grânulos Citoplasmáticos/metabolismo
Grânulos Citoplasmáticos/ultraestrutura
Transtornos do Desenvolvimento Sexual/genética
Transtornos do Desenvolvimento Sexual/metabolismo
Relação Dose-Resposta a Droga
Regulação da Expressão Gênica
Genes Reporter
Glicerol/metabolismo
Proteínas de Fluorescência Verde/genética
Proteínas de Fluorescência Verde/metabolismo
Oócitos/citologia
Oócitos/metabolismo
Pressão Osmótica
RNA Nucleotidiltransferases/genética
RNA Nucleotidiltransferases/metabolismo
Proteínas de Ligação a RNA/genética
Proteínas de Ligação a RNA/metabolismo
Ribonucleoproteínas/agonistas
Ribonucleoproteínas/metabolismo
Estresse Fisiológico
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Caenorhabditis elegans Proteins); 0 (Car-1 protein, C elegans); 0 (RNA-Binding Proteins); 0 (Ribonucleoproteins); 147336-22-9 (Green Fluorescent Proteins); EC 2.7.7.- (RNA Nucleotidyltransferases); EC 2.7.7.-. (cgh-1 protein, C elegans); IY9XDZ35W2 (Glucose); PDC6A3C0OX (Glycerol)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170802
[Lr] Data última revisão:
170802
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170407
[St] Status:MEDLINE
[do] DOI:10.1152/ajpcell.00364.2016


  7 / 3283 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28339983
[Au] Autor:Osanai T; Kuwahara A; Otsuki H; Saito K; Yokota Hirai M
[Ad] Endereço:RIKEN Center for Sustainable Resource Science, Suehiro-cho, Tsurumi-ku, Yokohama, Japan.
[Ti] Título:ACR11 is an Activator of Plastid-Type Glutamine Synthetase GS2 in Arabidopsis thaliana.
[So] Source:Plant Cell Physiol;58(4):650-657, 2017 04 01.
[Is] ISSN:1471-9053
[Cp] País de publicação:Japan
[La] Idioma:eng
[Ab] Resumo:Glutamine synthetase (GS) is an important enzyme for nitrogen assimilation, and GS2, encoded by GLN2, is the only plastid-type GS in Arabidopsis thaliana. A co-expression analysis suggested that the expression level of the gene encoding a uridylyltransferase-like protein, ACR11, is strongly correlated with GLN2 expression levels. Here we showed that the recombinant ACR11 protein increased GS2 activity in vitro by reducing the Km values of its substrate glutamine. A T-DNA insertion mutant of ACR11 exhibited a reduced GS activity under low nitrate conditions and reduced glutamine levels. Biochemical analyses revealed that ACR11 and GS2 interacted both in vitro and in vivo. These data demonstrate that ACR11 is an activator of GS2, giving it a mechanistic role in the nitrogen assimilation of A. thaliana.
[Mh] Termos MeSH primário: Proteínas de Arabidopsis/metabolismo
Arabidopsis/metabolismo
Glutamato-Amônia Ligase/metabolismo
RNA Nucleotidiltransferases/metabolismo
[Mh] Termos MeSH secundário: Arabidopsis/genética
Proteínas de Arabidopsis/genética
DNA Bacteriano
Regulação da Expressão Gênica de Plantas
Glutamato-Amônia Ligase/genética
Mutação
Nitrogênio/metabolismo
Plastídeos/metabolismo
RNA Nucleotidiltransferases/genética
Proteínas Recombinantes/genética
Proteínas Recombinantes/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Arabidopsis Proteins); 0 (DNA, Bacterial); 0 (Recombinant Proteins); 0 (T-DNA); EC 2.7.7.- (ACR11 protein, Arabidopsis); EC 2.7.7.- (RNA Nucleotidyltransferases); EC 6.3.1.- (glutamine synthetase 2); EC 6.3.1.2 (Glutamate-Ammonia Ligase); N762921K75 (Nitrogen)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171017
[Lr] Data última revisão:
171017
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170325
[St] Status:MEDLINE
[do] DOI:10.1093/pcp/pcx033


  8 / 3283 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28117687
[Au] Autor:Campos Guillen J; Jones GH; Saldaña Gutiérrez C; Hernández-Flores JL; Cruz Medina JA; Valenzuela Soto JH; Pacheco Hernández S; Romero Gómez S; Morales Tlalpan V
[Ad] Endereço:Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, 76010 Querétaro, Qro., Mexico. juan.campos@uaq.mx.
[Ti] Título:Critical Minireview: The Fate of tRNA during Oxidative Stress in Bacillus subtilis.
[So] Source:Biomolecules;7(1), 2017 Jan 20.
[Is] ISSN:2218-273X
[Cp] País de publicação:Switzerland
[La] Idioma:eng
[Ab] Resumo:Oxidative stress occurs when cells are exposed to elevated levels of reactive oxygen species that can damage biological molecules. One bacterial response to oxidative stress involves disulfide bond formation either between protein thiols or between protein thiols and low-molecular-weight (LMW) thiols. Bacillithiol was recently identified as a major low-molecular-weight thiol in and related Firmicutes. Four genes ( , , , and ) are involved in bacillithiol biosynthesis. The and genes are part of a seven-gene operon ( ), which includes the essential gene , encoding CCA-tRNA nucleotidyltransferase. The inclusion of in the operon containing bacillithiol biosynthetic genes suggests that the integrity of the 3' terminus of tRNAs may also be important in oxidative stress. The addition of the 3' terminal CCA sequence by CCA-tRNA nucleotidyltransferase to give rise to a mature tRNA and functional molecules ready for aminoacylation plays an essential role during translation and expression of the genetic code. Any defects in these processes, such as the accumulation of shorter and defective tRNAs under oxidative stress, might exert a deleterious effect on cells. This review summarizes the physiological link between tRNA regulation and oxidative stress in .
[Mh] Termos MeSH primário: Bacillus subtilis/genética
RNA Nucleotidiltransferases/metabolismo
RNA de Transferência de Cisteína/metabolismo
[Mh] Termos MeSH secundário: Bacillus subtilis/metabolismo
Proteínas de Bactérias/metabolismo
Cisteína/análogos & derivados
Cisteína/biossíntese
Dissulfetos/metabolismo
Glucosamina/análogos & derivados
Glucosamina/biossíntese
Modelos Moleculares
Estresse Oxidativo
RNA Bacteriano/metabolismo
RNA de Transferência de Cisteína/química
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Disulfides); 0 (RNA, Bacterial); 0 (RNA, Transfer, Cys); 0 (bacillithiol); EC 2.7.7.- (RNA Nucleotidyltransferases); EC 2.7.7.- (tRNA nucleotidyltransferase); K848JZ4886 (Cysteine); N08U5BOQ1K (Glucosamine)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171108
[Lr] Data última revisão:
171108
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170125
[St] Status:MEDLINE


  9 / 3283 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28068143
[Au] Autor:Taylor A; Schenkel LC; Yokich M; Bakovic M
[Ad] Endereço:Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
[Ti] Título:Adaptations to excess choline in insulin resistant and Pcyt2 deficient skeletal muscle.
[So] Source:Biochem Cell Biol;95(2):223-231, 2017 Apr.
[Is] ISSN:1208-6002
[Cp] País de publicação:Canada
[La] Idioma:eng
[Ab] Resumo:It was hypothesized that choline supplementation in insulin resistant (IR) CTP:phosphoethanolamine cytidylyltransferase deficient (Pcyt2 ) mice would ameliorate muscle function by remodeling glucose and fatty acid (FA) metabolism. Pcyt2 mice either received no treatment or were allowed access to 2 mg/mL choline in drinking water for 4 weeks. Skeletal muscle was harvested from choline treated and untreated mice. Lipid analysis and metabolic gene expression and signaling pathways were compared between untreated Pcyt2 mice, treated Pcyt2 mice, and Pcyt2 mice. The major positive effect of choline supplementation on IR muscle was the reduction of glucose utilization for FA and triglyceride (TAG) synthesis and increased muscle glucose storage as glycogen. Choline reduced the expression of genes for FA and TAG formation (Scd1, Fas, Srebp1c, Dgat1/2), upregulated the genes for FA oxidation (Cpt1, Pparα, Pgc1α), and had minor effects on phospholipid and lipolysis genes. Pcyt2 muscle had reduced insulin signaling (IRS1), autophagy (LC3), and choline transport (CTL1) proteins that were restored by choline treatment. Additionally, choline activated AMPK and Akt while inhibiting mTORC1 phosphorylation. These data established that choline supplementation could restore muscle glucose metabolism by reducing lipogenesis and improving mitochondrial and intracellular signaling for protein and energy metabolism in insulin resistant Pcyt2 deficient mice.
[Mh] Termos MeSH primário: Adaptação Fisiológica/efeitos dos fármacos
Colina/farmacologia
Resistência à Insulina
Lipogênese/efeitos dos fármacos
RNA Nucleotidiltransferases/genética
[Mh] Termos MeSH secundário: Adaptação Fisiológica/genética
Administração Oral
Animais
Carnitina O-Palmitoiltransferase/genética
Carnitina O-Palmitoiltransferase/metabolismo
Diacilglicerol O-Aciltransferase/genética
Diacilglicerol O-Aciltransferase/metabolismo
Ácidos Graxos/metabolismo
Regulação da Expressão Gênica
Glucose/metabolismo
Proteínas Substratos do Receptor de Insulina/genética
Proteínas Substratos do Receptor de Insulina/metabolismo
Lipogênese/genética
Camundongos
Camundongos Knockout
Proteínas Associadas aos Microtúbulos/genética
Proteínas Associadas aos Microtúbulos/metabolismo
Músculo Esquelético
Proteínas de Transporte de Cátions Orgânicos/genética
Proteínas de Transporte de Cátions Orgânicos/metabolismo
PPAR alfa/genética
PPAR alfa/metabolismo
Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
RNA Nucleotidiltransferases/deficiência
Transdução de Sinais
Estearoil-CoA Dessaturase/genética
Estearoil-CoA Dessaturase/metabolismo
Proteína de Ligação a Elemento Regulador de Esterol 1/genética
Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
Triglicerídeos/metabolismo
Receptor fas/genética
Receptor fas/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (CTL1 protein, mouse); 0 (Fas protein, mouse); 0 (Fatty Acids); 0 (Insulin Receptor Substrate Proteins); 0 (Irs1 protein, mouse); 0 (MAP1LC3 protein, mouse); 0 (Microtubule-Associated Proteins); 0 (Organic Cation Transport Proteins); 0 (PPAR alpha); 0 (Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha); 0 (Ppargc1a protein, mouse); 0 (Srebf1 protein, mouse); 0 (Sterol Regulatory Element Binding Protein 1); 0 (Triglycerides); 0 (fas Receptor); EC 1.14.19.1 (Scd1 protein, mouse); EC 1.14.19.1 (Stearoyl-CoA Desaturase); EC 2.3.1.20 (DGAT2 protein, mouse); EC 2.3.1.20 (Dgat1 protein, mouse); EC 2.3.1.20 (Diacylglycerol O-Acyltransferase); EC 2.3.1.21 (CPT1B protein, mouse); EC 2.3.1.21 (Carnitine O-Palmitoyltransferase); EC 2.7.7.- (RNA Nucleotidyltransferases); EC 2.7.7.14 (Ethanolamine-phosphate cytidylyltransferase); IY9XDZ35W2 (Glucose); N91BDP6H0X (Choline)
[Em] Mês de entrada:1705
[Cu] Atualização por classe:171116
[Lr] Data última revisão:
171116
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170110
[St] Status:MEDLINE
[do] DOI:10.1139/bcb-2016-0105


  10 / 3283 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28055181
[Au] Autor:Katolik A; Clark NE; Tago N; Montemayor EJ; Hart PJ; Damha MJ
[Ad] Endereço:Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
[Ti] Título:Fluorescent Branched RNAs for High-Throughput Analysis of Dbr1 Enzyme Kinetics and Inhibition.
[So] Source:ACS Chem Biol;12(3):622-627, 2017 Mar 17.
[Is] ISSN:1554-8937
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:We have developed fluorescent 2',5' branched RNAs (bRNA) that permit real time monitoring of RNA lariat (intron) debranching enzyme (Dbr1) kinetics. These compounds contain fluorescein (FAM) on the 5' arm of the bRNA that is quenched by a dabcyl moiety on the 2' arm. Dbr1-mediated hydrolysis of the 2',5' linkage induces a large increase in fluorescence, providing a convenient assay for Dbr1 hydrolysis. We show that unlabeled bRNAs with non-native 2',5'-phosphodiester linkages, such as phosphoramidate or phosphorothioate, can inhibit Dbr1-mediated debranching with IC values in the low nanomolar range. In addition to measuring kinetic parameters of the debranching enzyme, these probes can be used for high throughput screening (HTS) of chemical libraries with the aim of identifying Dbr1 inhibitors, compounds that may be useful in treating neurodegenerative diseases and retroviral infections.
[Mh] Termos MeSH primário: Corantes Fluorescentes/química
Ensaios de Triagem em Larga Escala
RNA Nucleotidiltransferases/metabolismo
RNA/química
[Mh] Termos MeSH secundário: Cinética
RNA Nucleotidiltransferases/antagonistas & inibidores
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Fluorescent Dyes); 63231-63-0 (RNA); EC 2.7.7.- (RNA Nucleotidyltransferases)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170811
[Lr] Data última revisão:
170811
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170106
[St] Status:MEDLINE
[do] DOI:10.1021/acschembio.6b00971



página 1 de 329 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde