Base de dados : MEDLINE
Pesquisa : D08.811.913.696.445.735.532 [Categoria DeCS]
Referências encontradas : 676 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 68 ir para página                         

  1 / 676 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29311576
[Au] Autor:Razew M; Warkocki Z; Taube M; Kolondra A; Czarnocki-Cieciura M; Nowak E; Labedzka-Dmoch K; Kawinska A; Piatkowski J; Golik P; Kozak M; Dziembowski A; Nowotny M
[Ad] Endereço:Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland.
[Ti] Título:Structural analysis of mtEXO mitochondrial RNA degradosome reveals tight coupling of nuclease and helicase components.
[So] Source:Nat Commun;9(1):97, 2018 01 08.
[Is] ISSN:2041-1723
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Nuclease and helicase activities play pivotal roles in various aspects of RNA processing and degradation. These two activities are often present in multi-subunit complexes from nucleic acid metabolism. In the mitochondrial exoribonuclease complex (mtEXO) both enzymatic activities are tightly coupled making it an excellent minimal system to study helicase-exoribonuclease coordination. mtEXO is composed of Dss1 3'-to-5' exoribonuclease and Suv3 helicase. It is the master regulator of mitochondrial gene expression in yeast. Here, we present the structure of mtEXO and a description of its mechanism of action. The crystal structure of Dss1 reveals domains that are responsible for interactions with Suv3. Importantly, these interactions are compatible with the conformational changes of Suv3 domains during the helicase cycle. We demonstrate that mtEXO is an intimate complex which forms an RNA-binding channel spanning its entire structure, with Suv3 helicase feeding the 3' end of the RNA toward the active site of Dss1.
[Mh] Termos MeSH primário: Endorribonucleases/metabolismo
Exorribonucleases/metabolismo
Proteínas Mitocondriais/metabolismo
Complexos Multienzimáticos/metabolismo
Polirribonucleotídeo Nucleotidiltransferase/metabolismo
RNA Helicases/metabolismo
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Sequência de Bases
Candida glabrata/enzimologia
Candida glabrata/genética
Candida glabrata/metabolismo
Cristalografia por Raios X
RNA Helicases DEAD-box/química
RNA Helicases DEAD-box/genética
RNA Helicases DEAD-box/metabolismo
Endorribonucleases/química
Endorribonucleases/genética
Exorribonucleases/química
Exorribonucleases/genética
Proteínas Mitocondriais/química
Proteínas Mitocondriais/genética
Complexos Multienzimáticos/química
Complexos Multienzimáticos/genética
Conformação de Ácido Nucleico
Polirribonucleotídeo Nucleotidiltransferase/química
Polirribonucleotídeo Nucleotidiltransferase/genética
Ligação Proteica
Conformação Proteica
RNA/química
RNA/genética
RNA/metabolismo
RNA Helicases/química
RNA Helicases/genética
Saccharomyces cerevisiae/enzimologia
Saccharomyces cerevisiae/genética
Saccharomyces cerevisiae/metabolismo
Proteínas de Saccharomyces cerevisiae/química
Proteínas de Saccharomyces cerevisiae/genética
Proteínas de Saccharomyces cerevisiae/metabolismo
Homologia de Sequência de Aminoácidos
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Mitochondrial Proteins); 0 (Multienzyme Complexes); 0 (RNA, mitochondrial); 0 (Saccharomyces cerevisiae Proteins); 0 (degradosome); 63231-63-0 (RNA); EC 2.7.7.8 (Polyribonucleotide Nucleotidyltransferase); EC 3.1.- (Endoribonucleases); EC 3.1.- (Exoribonucleases); EC 3.1.13.1 (DSS1 protein, S cerevisiae); EC 3.6.1.- (SUV3 protein, S cerevisiae); EC 3.6.4.13 (DEAD-box RNA Helicases); EC 3.6.4.13 (RNA Helicases)
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180305
[Lr] Data última revisão:
180305
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180110
[St] Status:MEDLINE
[do] DOI:10.1038/s41467-017-02570-5


  2 / 676 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28396352
[Au] Autor:Aguirre AA; Vicente AM; Hardwick SW; Alvelos DM; Mazzon RR; Luisi BF; Marques MV
[Ad] Endereço:Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
[Ti] Título:Association of the Cold Shock DEAD-Box RNA Helicase RhlE to the RNA Degradosome in Caulobacter crescentus.
[So] Source:J Bacteriol;199(13), 2017 Jul 01.
[Is] ISSN:1098-5530
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:In diverse bacterial lineages, multienzyme assemblies have evolved that are central elements of RNA metabolism and RNA-mediated regulation. The aquatic Gram-negative bacterium , which has been a model system for studying the bacterial cell cycle, has an RNA degradosome assembly that is formed by the endoribonuclease RNase E and includes the DEAD-box RNA helicase RhlB. Immunoprecipitations of extracts from cells expressing an epitope-tagged RNase E reveal that RhlE, another member of the DEAD-box helicase family, associates with the degradosome at temperatures below those optimum for growth. Phenotype analyses of , , and mutant strains show that RhlE is important for cell fitness at low temperature and its role may not be substituted by RhlB. Transcriptional and translational fusions of to the reporter gene and immunoblot analysis of an epitope-tagged RhlE indicate that its expression is induced upon temperature decrease, mainly through posttranscriptional regulation. RNase E pulldown assays show that other proteins, including the transcription termination factor Rho, a second DEAD-box RNA helicase, and ribosomal protein S1, also associate with the degradosome at low temperature. The results suggest that the RNA degradosome assembly can be remodeled with environmental change to alter its repertoire of helicases and other accessory proteins. DEAD-box RNA helicases are often present in the RNA degradosome complex, helping unwind secondary structures to facilitate degradation. is an interesting organism to investigate degradosome remodeling with change in temperature, because it thrives in freshwater bodies and withstands low temperature. In this study, we show that at low temperature, the cold-induced DEAD-box RNA helicase RhlE is recruited to the RNA degradosome, along with other helicases and the Rho protein. RhlE is essential for bacterial fitness at low temperature, and its function may not be complemented by RhlB, although RhlE is able to complement for loss. These results suggest that RhlE has a specific role in the degradosome at low temperature, potentially improving adaptation to this condition.
[Mh] Termos MeSH primário: Proteínas de Bactérias/metabolismo
Caulobacter crescentus/metabolismo
RNA Helicases DEAD-box/metabolismo
Endorribonucleases/fisiologia
Regulação Bacteriana da Expressão Gênica/fisiologia
Complexos Multienzimáticos/fisiologia
Polirribonucleotídeo Nucleotidiltransferase/fisiologia
RNA Helicases/fisiologia
RNA Bacteriano/metabolismo
[Mh] Termos MeSH secundário: Proteínas de Bactérias/genética
Caulobacter crescentus/genética
Temperatura Baixa
Regulação Enzimológica da Expressão Gênica/fisiologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Multienzyme Complexes); 0 (RNA, Bacterial); 0 (degradosome); EC 2.7.7.8 (Polyribonucleotide Nucleotidyltransferase); EC 3.1.- (Endoribonucleases); EC 3.6.4.13 (DEAD-box RNA Helicases); EC 3.6.4.13 (RNA Helicases)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:170714
[Lr] Data última revisão:
170714
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170412
[St] Status:MEDLINE


  3 / 676 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28334892
[Au] Autor:Stone CM; Butt LE; Bufton JC; Lourenco DC; Gowers DM; Pickford AR; Cox PA; Vincent HA; Callaghan AJ
[Ad] Endereço:School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK.
[Ti] Título:Inhibition of homologous phosphorolytic ribonucleases by citrate may represent an evolutionarily conserved communicative link between RNA degradation and central metabolism.
[So] Source:Nucleic Acids Res;45(8):4655-4666, 2017 May 05.
[Is] ISSN:1362-4962
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Ribonucleases play essential roles in all aspects of RNA metabolism, including the coordination of post-transcriptional gene regulation that allows organisms to respond to internal changes and environmental stimuli. However, as inherently destructive enzymes, their activity must be carefully controlled. Recent research exemplifies the repertoire of regulatory strategies employed by ribonucleases. The activity of the phosphorolytic exoribonuclease, polynucleotide phosphorylase (PNPase), has previously been shown to be modulated by the Krebs cycle metabolite citrate in Escherichia coli. Here, we provide evidence for the existence of citrate-mediated inhibition of ribonucleases in all three domains of life. In silico molecular docking studies predict that citrate will bind not only to bacterial PNPases from E. coli and Streptomyces antibioticus, but also PNPase from human mitochondria and the structurally and functionally related archaeal exosome complex from Sulfolobus solfataricus. Critically, we show experimentally that citrate also inhibits the exoribonuclease activity of bacterial, eukaryotic and archaeal PNPase homologues in vitro. Furthermore, bioinformatics data, showing key citrate-binding motifs conserved across a broad range of PNPase homologues, suggests that this regulatory mechanism may be widespread. Overall, our data highlight a communicative link between ribonuclease activity and central metabolism that may have been conserved through the course of evolution.
[Mh] Termos MeSH primário: Ácido Cítrico/química
Escherichia coli/enzimologia
Polirribonucleotídeo Nucleotidiltransferase/química
RNA/química
Streptomyces antibioticus/enzimologia
Sulfolobus solfataricus/enzimologia
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Sítios de Ligação
Evolução Biológica
Ácido Cítrico/metabolismo
Clonagem Molecular
Biologia Computacional
Sequência Conservada
Escherichia coli/genética
Exossomos/química
Exossomos/enzimologia
Expressão Gênica
Seres Humanos
Cinética
Mitocôndrias/química
Mitocôndrias/enzimologia
Simulação de Acoplamento Molecular
Polirribonucleotídeo Nucleotidiltransferase/genética
Polirribonucleotídeo Nucleotidiltransferase/metabolismo
Ligação Proteica
Domínios e Motivos de Interação entre Proteínas
Estrutura Secundária de Proteína
RNA/metabolismo
Estabilidade de RNA/genética
Proteínas Recombinantes/química
Proteínas Recombinantes/genética
Proteínas Recombinantes/metabolismo
Alinhamento de Sequência
Streptomyces antibioticus/genética
Homologia Estrutural de Proteína
Especificidade por Substrato
Sulfolobus solfataricus/genética
Termodinâmica
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Recombinant Proteins); 2968PHW8QP (Citric Acid); 63231-63-0 (RNA); EC 2.7.7.8 (Polyribonucleotide Nucleotidyltransferase)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170906
[Lr] Data última revisão:
170906
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170324
[St] Status:MEDLINE
[do] DOI:10.1093/nar/gkx114


  4 / 676 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28291845
[Au] Autor:Szewczyk M; Fedoryszak-Kuska N; Tkaczuk K; Dobrucki J; Waligórska A; Stepien PP
[Ad] Endereço:Institute of Genetics and Biotechnology, Faculty of Biology, Warsaw University, Warsaw, Poland.
[Ti] Título:Human SUV3 helicase regulates growth rate of the HeLa cells and can localize in the nucleoli.
[So] Source:Acta Biochim Pol;64(1):177-181, 2017.
[Is] ISSN:1734-154X
[Cp] País de publicação:Poland
[La] Idioma:eng
[Ab] Resumo:The human SUV3 helicase (SUV3, hSUV3, SUPV3L1) is a DNA/RNA unwinding enzyme belonging to the class of DexH-box helicases. It localizes predominantly in the mitochondria, where it forms an RNA-degrading complex called mitochondrial degradosome with exonuclease PNP (polynucleotide phosphorylase). Association of this complex with the polyA polymerase can modulate mitochondrial polyA tails. Silencing of the SUV3 gene was shown to inhibit the cell cycle and to induce apoptosis in human cell lines. However, since small amounts of the SUV3 helicase were found in the cell nuclei, it was not clear whether the observed phenotypes of SUV3 depletion were of mitochondrial or nuclear origin. In order to answer this question we have designed gene constructs able to inhibit the SUV3 activity exclusively in the cell nuclei. The results indicate that the observed growth rate impairment upon SUV3 depletion is due to its nuclear function(s). Unexpectedly, overexpression of the nuclear-targeted wild-type copies of the SUV3 gene resulted in a higher growth rate. In addition, we demonstrate that the SUV3 helicase can be found in the HeLa cell nucleoli, but it is not detectable in the DNA-repair foci. Our results indicate that the nucleolar-associated human SUV3 protein is an important factor in regulation of the cell cycle.
[Mh] Termos MeSH primário: Ciclo Celular
Nucléolo Celular/metabolismo
RNA Helicases DEAD-box/fisiologia
Mitocôndrias/metabolismo
[Mh] Termos MeSH secundário: Apoptose
Núcleo Celular/metabolismo
Proliferação Celular
Endorribonucleases
Células HeLa
Seres Humanos
Complexos Multienzimáticos
Polirribonucleotídeo Nucleotidiltransferase
RNA Helicases
Transfecção
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Multienzyme Complexes); 0 (degradosome); EC 2.7.7.8 (Polyribonucleotide Nucleotidyltransferase); EC 3.1.- (Endoribonucleases); EC 3.6.1.- (SUPV3L1 protein, human); EC 3.6.4.13 (DEAD-box RNA Helicases); EC 3.6.4.13 (RNA Helicases)
[Em] Mês de entrada:1704
[Cu] Atualização por classe:170417
[Lr] Data última revisão:
170417
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170315
[St] Status:MEDLINE
[do] DOI:10.18388/abp.2016_1419


  5 / 676 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28031281
[Au] Autor:Maeda T; Tanaka Y; Wachi M; Inui M
[Ad] Endereço:Research Institute of Innovative Technology for the Earth, Kyoto, Japan.
[Ti] Título:Polynucleotide Phosphorylase, RNase E/G, and YbeY Are Involved in the Maturation of 4.5S RNA in Corynebacterium glutamicum.
[So] Source:J Bacteriol;199(5), 2017 Mar 01.
[Is] ISSN:1098-5530
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:has been applied for the industrial production of various metabolites, such as amino acids. To understand the biosynthesis of the membrane protein in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP is found in all three domains of life and plays an important role in the membrane insertion of proteins. SRP RNA is initially transcribed as precursor molecules; however, relatively little is known about its maturation. In , SRP consists of the Ffh protein and 4.5S RNA lacking an Alu domain. In this study, we found that 3'-to-5' exoribonuclease, polynucleotide phosphorylase (PNPase), and two endo-type RNases, RNase E/G and YbeY, are involved in the 3' maturation of 4.5S RNA in The mature form of 4.5S RNA was inefficiently formed in Δ Δ mutant cells, suggesting the existence of an alternative pathway for the 3' maturation of 4.5S RNA. Primer extension analysis also revealed that the 5' mature end of 4.5S RNA corresponds to that of the transcriptional start site. Immunoprecipitated Ffh protein contained immature 4.5S RNA in Δ , Δ , and Δ mutants, suggesting that 4.5S RNA precursors can interact with Ffh. These results imply that the maturation of 4.5S RNA can be performed in the 4.5S RNA-Ffh complex. Overproduction of a membrane protein, such as a transporter, is useful for engineering of strains of , which is a workhorse of amino acid production. To understand membrane protein biogenesis in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP contains the Ffh protein and SRP RNA and plays an important role in the membrane insertion of proteins. Although SRP RNA is highly conserved among the three domains of life, relatively little is known about its maturation. We show that PNPase, RNase E/G, and YbeY are involved in the 3' maturation of the SRP RNA (4.5S RNA) in this bacterium. This indicates that 3' end processing in this organism is different from that in other bacteria, such as .
[Mh] Termos MeSH primário: Corynebacterium glutamicum/metabolismo
Endorribonucleases/metabolismo
Metaloproteínas/metabolismo
Polirribonucleotídeo Nucleotidiltransferase/metabolismo
RNA Bacteriano/metabolismo
[Mh] Termos MeSH secundário: Proteínas de Bactérias/genética
Proteínas de Bactérias/metabolismo
Corynebacterium glutamicum/genética
Endorribonucleases/genética
Regulação Bacteriana da Expressão Gênica/fisiologia
Genótipo
Metaloproteínas/genética
Polirribonucleotídeo Nucleotidiltransferase/genética
RNA Bacteriano/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (4.5S RNA); 0 (Bacterial Proteins); 0 (Metalloproteins); 0 (RNA, Bacterial); EC 2.7.7.8 (Polyribonucleotide Nucleotidyltransferase); EC 3.1.- (Endoribonucleases)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170902
[Lr] Data última revisão:
170902
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161230
[St] Status:MEDLINE


  6 / 676 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27834591
[Au] Autor:Dendooven T; Van den Bossche A; Hendrix H; Ceyssens PJ; Voet M; Bandyra KJ; De Maeyer M; Aertsen A; Noben JP; Hardwick SW; Luisi BF; Lavigne R
[Ad] Endereço:a Laboratory of Gene Technology , KU Leuven , Leuven , Belgium.
[Ti] Título:Viral interference of the bacterial RNA metabolism machinery.
[So] Source:RNA Biol;14(1):6-10, 2017 Jan 02.
[Is] ISSN:1555-8584
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:In a recent publication, we reported a unique interaction between a protein encoded by the giant myovirus phiKZ and the Pseudomonas aeruginosa RNA degradosome. Crystallography, site-directed mutagenesis and interactomics approaches revealed this 'degradosome interacting protein' or Dip, to adopt an 'open-claw' dimeric structure that presents acidic patches on its outer surface which hijack 2 conserved RNA binding sites on the scaffold domain of the RNase E component of the RNA degradosome. This interaction prevents substrate RNAs from being bound and degraded by the RNA degradosome during the virus infection cycle. In this commentary, we provide a perspective into the biological role of Dip, its structural analysis and its mysterious evolutionary origin, and we suggest some therapeutic and biotechnological applications of this distinctive viral protein.
[Mh] Termos MeSH primário: Bactérias/genética
Bactérias/virologia
Bacteriófagos/fisiologia
Interações Hospedeiro-Patógeno/genética
RNA Bacteriano/genética
[Mh] Termos MeSH secundário: Bactérias/efeitos dos fármacos
Bactérias/metabolismo
Endorribonucleases/genética
Endorribonucleases/metabolismo
Complexos Multienzimáticos/genética
Complexos Multienzimáticos/metabolismo
Polirribonucleotídeo Nucleotidiltransferase/genética
Polirribonucleotídeo Nucleotidiltransferase/metabolismo
Ligação Proteica
Pseudomonas aeruginosa/fisiologia
Pseudomonas aeruginosa/virologia
RNA Helicases/genética
RNA Helicases/metabolismo
Estabilidade de RNA
RNA Bacteriano/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Multienzyme Complexes); 0 (RNA, Bacterial); 0 (degradosome); EC 2.7.7.8 (Polyribonucleotide Nucleotidyltransferase); EC 3.1.- (Endoribonucleases); EC 3.6.4.13 (RNA Helicases)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171111
[Lr] Data última revisão:
171111
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161112
[St] Status:MEDLINE
[do] DOI:10.1080/15476286.2016.1251003


  7 / 676 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:27698082
[Au] Autor:Cameron TA; De Lay NR
[Ad] Endereço:Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA.
[Ti] Título:The Phosphorolytic Exoribonucleases Polynucleotide Phosphorylase and RNase PH Stabilize sRNAs and Facilitate Regulation of Their mRNA Targets.
[So] Source:J Bacteriol;198(24):3309-3317, 2016 Dec 15.
[Is] ISSN:1098-5530
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Gene regulation by base pairing between small noncoding RNAs (sRNAs) and their mRNA targets is an important mechanism that allows bacteria to maintain homeostasis and respond to dynamic environments. In Gram-negative bacteria, sRNA pairing and regulation are mediated by several RNA-binding proteins, including the sRNA chaperone Hfq and polynucleotide phosphorylase (PNPase). PNPase and its homolog RNase PH together represent the two 3' to 5' phosphorolytic exoribonucleases found in Escherichia coli; however, the role of RNase PH in sRNA regulation has not yet been explored and reported. Here, we have examined in detail how PNPase and RNase PH interact to support sRNA stability, activity, and base pairing in exponential and stationary growth conditions. Our results indicate that these proteins facilitate the stability and regulatory function of the sRNAs RyhB, CyaR, and MicA during exponential growth. PNPase further appears to contribute to pairing between RyhB and its mRNA targets. During stationary growth, each sRNA responded differently to the absence or presence of PNPase and RNase PH. Finally, our results suggest that PNPase and RNase PH stabilize only Hfq-bound sRNAs. Taken together, these results confirm and extend previous findings that PNPase participates in sRNA regulation and reveal that RNase PH serves a similar, albeit more limited, role as well. These proteins may, therefore, act to protect sRNAs from spurious degradation while also facilitating regulatory pairing with their targets. IMPORTANCE: In many bacteria, Hfq-dependent base-pairing sRNAs facilitate rapid changes in gene expression that are critical for maintaining homeostasis and responding to stress and environmental changes. While a role for Hfq in this process was identified more than 2 decades ago, the identity and function of the other proteins required for Hfq-dependent regulation by sRNAs have not been resolved. Here, we demonstrate that PNPase and RNase PH, the two phosphorolytic RNases in E. coli, stabilize sRNAs against premature degradation and, in the case of PNPase, also accelerate regulation by sRNA-mRNA pairings for certain sRNAs. These findings are the first to demonstrate that RNase PH influences and supports sRNA regulation and suggest shared and distinct roles for these phosphorolytic RNases in this process.
[Mh] Termos MeSH primário: DNA Glicosilases/metabolismo
Escherichia coli/enzimologia
Exorribonucleases/metabolismo
Polirribonucleotídeo Nucleotidiltransferase/metabolismo
RNA Bacteriano/metabolismo
RNA Mensageiro/metabolismo
Pequeno RNA não Traduzido/metabolismo
[Mh] Termos MeSH secundário: DNA Glicosilases/química
DNA Glicosilases/genética
Escherichia coli/química
Escherichia coli/genética
Escherichia coli/metabolismo
Exorribonucleases/genética
Regulação Bacteriana da Expressão Gênica
Polirribonucleotídeo Nucleotidiltransferase/genética
Estabilidade de RNA
RNA Bacteriano/química
RNA Bacteriano/genética
RNA Mensageiro/química
RNA Mensageiro/genética
Pequeno RNA não Traduzido/química
Pequeno RNA não Traduzido/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (RNA, Bacterial); 0 (RNA, Messenger); 0 (RNA, Small Untranslated); EC 2.7.7.56 (ribonuclease PH); EC 2.7.7.8 (Polyribonucleotide Nucleotidyltransferase); EC 3.1.- (Exoribonucleases); EC 3.2.2.- (DNA Glycosylases); EC 3.2.2.- (mutY adenine glycosylase)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:170718
[Lr] Data última revisão:
170718
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161005
[St] Status:MEDLINE


  8 / 676 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27495318
[Au] Autor:Fontaine F; Gasiorowski E; Gracia C; Ballouche M; Caillet J; Marchais A; Hajnsdorf E
[Ad] Endereço:CNRS UMR8261 (previously FRE3630) associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France.
[Ti] Título:The small RNA SraG participates in PNPase homeostasis.
[So] Source:RNA;22(10):1560-73, 2016 Oct.
[Is] ISSN:1469-9001
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The rpsO-pnp operon encodes ribosomal protein S15 and polynucleotide phosphorylase, a major 3'-5' exoribonuclease involved in mRNA decay in Escherichia coli The gene for the SraG small RNA is located between the coding regions of the rpsO and pnp genes, and it is transcribed in the opposite direction relative to the two genes. No function has been assigned to SraG. Multiple levels of post-transcriptional regulation have been demonstrated for the rpsO-pnp operon. Here we show that SraG is a new factor affecting pnp expression. SraG overexpression results in a reduction of pnp expression and a destabilization of pnp mRNA; in contrast, inhibition of SraG transcription results in a higher level of the pnp transcript. Furthermore, in vitro experiments indicate that SraG inhibits translation initiation of pnp Together, these observations demonstrate that SraG participates in the post-transcriptional control of pnp by a direct antisense interaction between SraG and PNPase RNAs. Our data reveal a new level of regulation in the expression of this major exoribonuclease.
[Mh] Termos MeSH primário: Proteínas de Escherichia coli/genética
Regulação Bacteriana da Expressão Gênica
Polirribonucleotídeo Nucleotidiltransferase/genética
RNA Bacteriano/genética
RNA Interferente Pequeno/genética
[Mh] Termos MeSH secundário: Escherichia coli/genética
Escherichia coli/metabolismo
Proteínas de Escherichia coli/metabolismo
Homeostase
Óperon
Polirribonucleotídeo Nucleotidiltransferase/metabolismo
RNA Bacteriano/metabolismo
RNA Mensageiro/genética
RNA Mensageiro/metabolismo
RNA Interferente Pequeno/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Escherichia coli Proteins); 0 (RNA, Bacterial); 0 (RNA, Messenger); 0 (RNA, Small Interfering); EC 2.7.7.8 (Polyribonucleotide Nucleotidyltransferase)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:171001
[Lr] Data última revisão:
171001
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160807
[St] Status:MEDLINE
[do] DOI:10.1261/rna.055236.115


  9 / 676 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:27447594
[Au] Autor:Van den Bossche A; Hardwick SW; Ceyssens PJ; Hendrix H; Voet M; Dendooven T; Bandyra KJ; De Maeyer M; Aertsen A; Noben JP; Luisi BF; Lavigne R
[Ad] Endereço:Laboratory of Gene Technology, KU Leuven, Leuven, Belgium.
[Ti] Título:Structural elucidation of a novel mechanism for the bacteriophage-based inhibition of the RNA degradosome.
[So] Source:Elife;5, 2016 Jul 22.
[Is] ISSN:2050-084X
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:In all domains of life, the catalysed degradation of RNA facilitates rapid adaptation to changing environmental conditions, while destruction of foreign RNA is an important mechanism to prevent host infection. We have identified a virus-encoded protein termed gp37/Dip, which directly binds and inhibits the RNA degradation machinery of its bacterial host. Encoded by giant phage Ñ„KZ, this protein associates with two RNA binding sites of the RNase E component of the Pseudomonas aeruginosa RNA degradosome, occluding them from substrates and resulting in effective inhibition of RNA degradation and processing. The 2.2 Å crystal structure reveals that this novel homo-dimeric protein has no identifiable structural homologues. Our biochemical data indicate that acidic patches on the convex outer surface bind RNase E. Through the activity of Dip, Ñ„KZ has evolved a unique mechanism to down regulate a key metabolic process of its host to allow accumulation of viral RNA in infected cells.
[Mh] Termos MeSH primário: Endorribonucleases/antagonistas & inibidores
Interações Hospedeiro-Parasita
Complexos Multienzimáticos/antagonistas & inibidores
Polirribonucleotídeo Nucleotidiltransferase/antagonistas & inibidores
Fagos de Pseudomonas/metabolismo
Pseudomonas aeruginosa/enzimologia
Pseudomonas aeruginosa/virologia
RNA Helicases/antagonistas & inibidores
Proteínas Virais/metabolismo
[Mh] Termos MeSH secundário: Sítios de Ligação
Cristalografia por Raios X
Modelos Moleculares
Ligação Proteica
Conformação Proteica
Multimerização Proteica
Proteínas Virais/química
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Multienzyme Complexes); 0 (Viral Proteins); 0 (degradosome); EC 2.7.7.8 (Polyribonucleotide Nucleotidyltransferase); EC 3.1.- (Endoribonucleases); EC 3.1.4.- (ribonuclease E); EC 3.6.4.13 (RNA Helicases)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171002
[Lr] Data última revisão:
171002
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160723
[St] Status:MEDLINE


  10 / 676 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27215789
[Au] Autor:Rosana AR; Whitford DS; Fahlman RP; Owttrim GW
[Ad] Endereço:Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
[Ti] Título:Cyanobacterial RNA Helicase CrhR Localizes to the Thylakoid Membrane Region and Cosediments with Degradosome and Polysome Complexes in Synechocystis sp. Strain PCC 6803.
[So] Source:J Bacteriol;198(15):2089-99, 2016 Aug 01.
[Is] ISSN:1098-5530
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:UNLABELLED: The cyanobacterium Synechocystis sp. strain PCC 6803 encodes a single DEAD box RNA helicase, CrhR, whose expression is tightly autoregulated in response to cold stress. Subcellular localization and proteomic analysis results indicate that CrhR localizes to both the cytoplasmic and thylakoid membrane regions and cosediments with polysome and RNA degradosome components. Evidence is presented that either functional RNA helicase activity or a C-terminal localization signal was required for polysome but not thylakoid membrane localization. Polysome fractionation and runoff translation analysis results indicate that CrhR associates with actively translating polysomes. The data implicate a role for CrhR in translation or RNA degradation in the thylakoid region related to thylakoid biogenesis or stability, a role that is enhanced at low temperature. Furthermore, CrhR cosedimentation with polysome and RNA degradosome complexes links alteration of RNA secondary structure with a potential translation-RNA degradation complex in Synechocystis IMPORTANCE: The interaction between mRNA translation and degradation is a major determinant controlling gene expression. Regulation of RNA function by alteration of secondary structure by RNA helicases performs crucial roles, not only in both of these processes but also in all aspects of RNA metabolism. Here, we provide evidence that the cyanobacterial RNA helicase CrhR localizes to both the cytoplasmic and thylakoid membrane regions and cosediments with actively translating polysomes and RNA degradosome components. These findings link RNA helicase alteration of RNA secondary structure with translation and RNA degradation in prokaryotic systems and contribute to the data supporting the idea of the existence of a macromolecular machine catalyzing these reactions in prokaryotic systems, an association hitherto recognized only in archaea and eukarya.
[Mh] Termos MeSH primário: Endorribonucleases/metabolismo
Complexos Multienzimáticos/metabolismo
Polirribonucleotídeo Nucleotidiltransferase/metabolismo
Polirribossomos/metabolismo
RNA Helicases/metabolismo
Synechocystis/enzimologia
Tilacoides/metabolismo
[Mh] Termos MeSH secundário: Regulação Bacteriana da Expressão Gênica/fisiologia
Polirribossomos/genética
Transporte Proteico/fisiologia
RNA Helicases/genética
RNA Bacteriano/genética
RNA Bacteriano/metabolismo
RNA Mensageiro/genética
RNA Mensageiro/metabolismo
Synechocystis/genética
Synechocystis/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Multienzyme Complexes); 0 (RNA, Bacterial); 0 (RNA, Messenger); 0 (degradosome); EC 2.7.7.8 (Polyribonucleotide Nucleotidyltransferase); EC 3.1.- (Endoribonucleases); EC 3.6.4.13 (RNA Helicases)
[Em] Mês de entrada:1705
[Cu] Atualização por classe:170523
[Lr] Data última revisão:
170523
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160525
[St] Status:MEDLINE
[do] DOI:10.1128/JB.00267-16



página 1 de 68 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde