Base de dados : MEDLINE
Pesquisa : D08.811.913.696.645 [Categoria DeCS]
Referências encontradas : 78 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 8 ir para página                    

  1 / 78 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27431058
[Au] Autor:Appanna VP; Alhasawi AA; Auger C; Thomas SC; Appanna VD
[Ad] Endereço:Faculty of Science and Engineering, Laurentian University, Sudbury, ON P3E 2C6, Canada.
[Ti] Título:Phospho-transfer networks and ATP homeostasis in response to an ineffective electron transport chain in Pseudomonas fluorescens.
[So] Source:Arch Biochem Biophys;606:26-33, 2016 Sep 15.
[Is] ISSN:1096-0384
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Although oxidative stress is known to impede the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, the nutritionally-versatile microbe, Pseudomonas fluorescens has been shown to proliferate in the presence of hydrogen peroxide (H2O2) and nitrosative stress. In this study we demonstrate the phospho-transfer system that enables this organism to generate ATP was similar irrespective of the carbon source utilized. Despite the diminished activities of enzymes involved in the TCA cycle and in the electron transport chain (ETC), the ATP levels did not appear to be significantly affected in the stressed cells. Phospho-transfer networks mediated by acetate kinase (ACK), adenylate kinase (AK), and nucleoside diphosphate kinase (NDPK) are involved in maintaining ATP homeostasis in the oxidatively-challenged cells. This phospho-relay machinery orchestrated by substrate-level phosphorylation is aided by the up-regulation in the activities of such enzymes like phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK), and phosphoenolpyruvate synthase (PEPS). The enhanced production of phosphoenolpyruvate (PEP) and pyruvate further fuel the synthesis of ATP. Taken together, this metabolic reconfiguration enables the organism to fulfill its ATP need in an O2-independent manner by utilizing an intricate phospho-wire module aimed at maximizing the energy potential of PEP with the participation of AMP.
[Mh] Termos MeSH primário: Trifosfato de Adenosina/química
Pseudomonas fluorescens/metabolismo
[Mh] Termos MeSH secundário: Monofosfato de Adenosina/química
Ciclo do Ácido Cítrico
Densitometria
Transporte de Elétrons
Homeostase
Peróxido de Hidrogênio/química
Lipídeos/química
Oxirredução
Fosforilação Oxidativa
Estresse Oxidativo
Oxigênio/química
Fosfoenolpiruvato/química
Fosforilação
Fosfotransferases (Aceptores Pareados)/metabolismo
Piruvato Ortofosfato Diquinase/metabolismo
Espécies Reativas de Oxigênio/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Lipids); 0 (Reactive Oxygen Species); 415SHH325A (Adenosine Monophosphate); 73-89-2 (Phosphoenolpyruvate); 8L70Q75FXE (Adenosine Triphosphate); BBX060AN9V (Hydrogen Peroxide); EC 2.7.9.- (Phosphotransferases (Paired Acceptors)); EC 2.7.9.1 (Pyruvate, Orthophosphate Dikinase); EC 2.7.9.2 (pyruvate, water dikinase); S88TT14065 (Oxygen)
[Em] Mês de entrada:1705
[Cu] Atualização por classe:170523
[Lr] Data última revisão:
170523
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160720
[St] Status:MEDLINE


  2 / 78 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:25989474
[Au] Autor:Bowerman AF; Newberry M; Dielen AS; Whan A; Larroque O; Pritchard J; Gubler F; Howitt CA; Pogson BJ; Morell MK; Ral JP
[Ad] Endereço:Agriculture Flagship, Commonwealth Science and Industrial Research Organisation, Canberra, ACT, Australia.
[Ti] Título:Suppression of glucan, water dikinase in the endosperm alters wheat grain properties, germination and coleoptile growth.
[So] Source:Plant Biotechnol J;14(1):398-408, 2016 Jan.
[Is] ISSN:1467-7652
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Starch phosphate ester content is known to alter the physicochemical properties of starch, including its susceptibility to degradation. Previous work producing wheat (Triticum aestivum) with down-regulated glucan, water dikinase, the primary gene responsible for addition of phosphate groups to starch, in a grain-specific manner found unexpected phenotypic alteration in grain and growth. Here, we report on further characterization of these lines focussing on mature grain and early growth. We find that coleoptile length has been increased in these transgenic lines independently of grain size increases. No changes in starch degradation rates during germination could be identified, or any major alteration in soluble sugar levels that may explain the coleoptile growth modification. We identify some alteration in hormones in the tissues in question. Mature grain size is examined, as is Hardness Index and starch conformation. We find no evidence that the increased growth of coleoptiles in these lines is connected to starch conformation or degradation or soluble sugar content and suggest these findings provide a novel means of increasing coleoptile growth and early seedling establishment in cereal crop species.
[Mh] Termos MeSH primário: Cotilédone/crescimento & desenvolvimento
Endosperma/enzimologia
Germinação
Glucanos/metabolismo
Fosfotransferases (Aceptores Pareados)/metabolismo
Sementes/anatomia & histologia
Triticum/enzimologia
Água/metabolismo
[Mh] Termos MeSH secundário: Amilopectina/metabolismo
Dureza
Modelos Biológicos
Tamanho do Órgão
Fosfatos/metabolismo
Reguladores de Crescimento de Planta/metabolismo
Folhas de Planta/metabolismo
Proteínas de Plantas
Plantas Geneticamente Modificadas
Plântulas/crescimento & desenvolvimento
Amido/metabolismo
Transgenes
Triticum/anatomia & histologia
Triticum/embriologia
alfa-Amilases/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Glucans); 0 (Phosphates); 0 (Plant Growth Regulators); 0 (Plant Proteins); 059QF0KO0R (Water); 9005-25-8 (Starch); 9037-22-3 (Amylopectin); EC 2.7.9.- (Phosphotransferases (Paired Acceptors)); EC 3.2.1.1 (alpha-Amylases)
[Em] Mês de entrada:1612
[Cu] Atualização por classe:161230
[Lr] Data última revisão:
161230
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:150520
[St] Status:MEDLINE
[do] DOI:10.1111/pbi.12394


  3 / 78 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:26255340
[Au] Autor:Pirog TP; Shevchuk TA; Beregova KA; Kudrya NV
[Ti] Título:[PECULIARITIES OF GLUCOSE AND GLYCEROL METABOLISM IN Nocardia vaccinii IMB B-7405].
[So] Source:Ukr Biochem J;87(2):66-75, 2015 Mar-Apr.
[Is] ISSN:2409-4943
[Cp] País de publicação:Ukraine
[La] Idioma:ukr
[Ab] Resumo:It has been established that in cells of Nocardia vaccinii IMB B-7405 (surfactant producer) glucose catabolism is performed through pentose phosphate cycle as well as through gluconate (activity of NAD+-dependent glucose-6-phosphate dehydrogenase and FAD+-dependent glucose dehydrogenase 835 ± 41 and 698 ± 35 nmol.min-1.mg-1 of protein respectively). 6-Phosphogluconate formed in the gluconokinase reaction is involved in the pentose phosphate cycle (activity of constitutive NADP+-dependent 6-phosphogluconate dehydrogenase 357 ± 17 nmol.min-1.mg-1 of protein). Glycerol catabolism to dihydroxyacetonephosphate (the intermediate of glycolysis) may be performed in two ways: through glycerol-3-phosphate (glycerol kinase activity 244 ± 12 nmol.min-1.mg-1 of protein) and through dihydroxyacetone. Replenishment of the C4-dicarboxylic acids pool in N. vaccinii IMV B-7405 grown on glucose and glycerol occurs in the phosphoenolpyruvate(PEP)carboxylase reaction (714-803 nmol.min-1.mg-1 of protein). 2-Oxoglutarate was involved in tricarboxylic acid cycle by alternate pathway with the participation of 2-oxoglutarate synthase. The observed activity of both key enzymes of gluconeogenesis (PEP-carboxykinase and PEP-synthase), trehalose phosphate synthase and NADP+-dependent glutamate dehydrogenase confirmed the ability of IMV B-7405 strain to the synthesis of surface active glycoand aminolipids, respectively.
[Mh] Termos MeSH primário: Proteínas de Bactérias/metabolismo
Glucose/metabolismo
Glicerol/metabolismo
Nocardia/metabolismo
[Mh] Termos MeSH secundário: Ciclo do Ácido Cítrico/fisiologia
Di-Hidroxiacetona/metabolismo
Fosfato de Di-Hidroxiacetona/metabolismo
Gluconatos/metabolismo
Gluconeogênese/fisiologia
Glucose 1-Desidrogenase/metabolismo
Glucosefosfato Desidrogenase/metabolismo
Desidrogenase de Glutamato (NADP+)/metabolismo
Glicerofosfatos/metabolismo
Glicólise/fisiologia
Ácidos Cetoglutáricos/metabolismo
Cetona Oxirredutases/metabolismo
Via de Pentose Fosfato/fisiologia
Fosfoenolpiruvato/metabolismo
Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo
Fosfoenolpiruvato Carboxilase/metabolismo
Fosfogluconato Desidrogenase/metabolismo
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
Fosfotransferases (Aceptores Pareados)/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Gluconates); 0 (Glycerophosphates); 0 (Ketoglutaric Acids); 57-04-5 (Dihydroxyacetone Phosphate); 73-89-2 (Phosphoenolpyruvate); 8ID597Z82X (alpha-ketoglutaric acid); 9NTI6P3O4X (alpha-glycerophosphoric acid); EC 1.1.1.43 (Phosphogluconate Dehydrogenase); EC 1.1.1.47 (Glucose 1-Dehydrogenase); EC 1.1.1.49 (Glucosephosphate Dehydrogenase); EC 1.2.- (Ketone Oxidoreductases); EC 1.2.7.3 (2-oxoglutarate synthase); EC 1.4.1.4 (Glutamate Dehydrogenase (NADP+)); EC 2.7.1.- (Phosphotransferases (Alcohol Group Acceptor)); EC 2.7.1.12 (gluconokinase); EC 2.7.9.- (Phosphotransferases (Paired Acceptors)); EC 2.7.9.2 (pyruvate, water dikinase); EC 4.1.1.31 (Phosphoenolpyruvate Carboxylase); EC 4.1.1.49 (Phosphoenolpyruvate Carboxykinase (ATP)); IY9XDZ35W2 (Glucose); O10DDW6JOO (Dihydroxyacetone); PDC6A3C0OX (Glycerol); R4R8J0Q44B (gluconic acid); W31WK7B8U0 (6-phosphogluconic acid)
[Em] Mês de entrada:1508
[Cu] Atualização por classe:161125
[Lr] Data última revisão:
161125
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:150811
[St] Status:MEDLINE


  4 / 78 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:25707819
[Au] Autor:McCormick NE; Jakeman DL
[Ad] Endereço:College of Pharmacy, Dalhousie University, 5968 College St., Halifax, NS B3H 4R2, Canada.
[Ti] Título:On the mechanism of phosphoenolpyruvate synthetase (PEPs) and its inhibition by sodium fluoride: potential magnesium and aluminum fluoride complexes of phosphoryl transfer.
[So] Source:Biochem Cell Biol;93(3):236-40, 2015 Jun.
[Is] ISSN:1208-6002
[Cp] País de publicação:Canada
[La] Idioma:eng
[Ab] Resumo:Phosphoenolpyruvate synthase (PEPs) catalyzes the conversion of pyruvate to phosphoenolpyruvate (PEP) using a two-step mechanism invoking a phosphorylated-His intermediate. Formation of PEP is an initial step in gluconeogenesis, and PEPs is essential for growth of Escherichia coli on 3-carbon sources such as pyruvate. The production of PEPs has also been linked to bacterial virulence and antibiotic resistance. As such, PEPs is of interest as a target for antibiotic development, and initial investigations of PEPs have indicated inhibition by sodium fluoride. Similar inhibition has been observed in a variety of phospho-transfer enzymes through the formation of metal fluoride complexes within the active site. Herein we quantify the inhibitory capacity of sodium fluoride through a coupled spectrophotometric assay. The observed inhibition provides indirect evidence for the formation of a MgF3(-) complex within the enzyme active site and insight into the phospho-transfer mechanism of PEPs. The effect of AlCl3 on PEPs enzyme activity was also assessed and found to decrease substrate binding and turnover.
[Mh] Termos MeSH primário: Inibidores Enzimáticos/farmacologia
Fluoretos/farmacologia
Compostos de Magnésio/farmacologia
Fosfotransferases (Aceptores Pareados)/antagonistas & inibidores
Fosfotransferases (Aceptores Pareados)/metabolismo
Fluoreto de Sódio/farmacologia
[Mh] Termos MeSH secundário: Compostos de Alumínio/farmacologia
Cloretos/farmacologia
Escherichia coli/genética
Escherichia coli/metabolismo
Proteínas de Escherichia coli/antagonistas & inibidores
Proteínas de Escherichia coli/genética
Proteínas de Escherichia coli/metabolismo
Cinética
Fosfotransferases (Aceptores Pareados)/genética
Piruvato Sintase/antagonistas & inibidores
Piruvato Sintase/genética
Piruvato Sintase/metabolismo
Proteínas Recombinantes/genética
Proteínas Recombinantes/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Aluminum Compounds); 0 (Chlorides); 0 (Enzyme Inhibitors); 0 (Escherichia coli Proteins); 0 (Magnesium Compounds); 0 (Recombinant Proteins); 3CYT62D3GA (aluminum chloride); 5N014C7IWU (magnesium fluoride); 8ZYQ1474W7 (Sodium Fluoride); EC 1.2.7.1 (Pyruvate Synthase); EC 1.2.7.1 (ppsA protein, E coli); EC 2.7.9.- (Phosphotransferases (Paired Acceptors)); EC 2.7.9.2 (pyruvate, water dikinase); Q80VPU408O (Fluorides); Z77H3IKW94 (aluminum fluoride)
[Em] Mês de entrada:1602
[Cu] Atualização por classe:150526
[Lr] Data última revisão:
150526
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:150225
[St] Status:MEDLINE
[do] DOI:10.1139/bcb-2014-0153


  5 / 78 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:25763482
[Au] Autor:Hejazi M; Mahlow S; Fettke J
[Ad] Endereço:a Plant Physiology; Institute of Biochemistry and Biology; University of Potsdam; Potsdam-Golm, Germany.
[Ti] Título:The glucan phosphorylation mediated by α-glucan, water dikinase (GWD) is also essential in the light phase for a functional transitory starch turn-over.
[So] Source:Plant Signal Behav;9(7):e28892, 2014.
[Is] ISSN:1559-2324
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Starch phosphorylation mediated by the α-glucan, water dikinase (GWD) is crucial for transitory starch metabolism. The impact of the GWD action on transitory starch metabolism was analyzed in Arabidopsis mutants either lacking or revealing different reduced levels of GWD activity. In these mutants, glucose 6-phosphate (G6P) levels of the transitory leaf starch, the average leaf starch content, as well as alterations in the growth phenotype were determined under different light length conditions, including continuous light. Based on biochemical and growth phenotypical data, we found that the length of the light phase affects the phosphorylation state of the transitory starch and, by this, the average leaf starch content and the resulting growth of the plants. Additionally, we discuss data referring to an involvement of the GWD mediated glucan phosphorylation in starch synthesis, as, e.g., starch phosphorylation occurred even when a dark phase was omitted.
[Mh] Termos MeSH primário: Proteínas de Arabidopsis/metabolismo
Arabidopsis/metabolismo
Glucanos/metabolismo
Luz
Fosfotransferases (Aceptores Pareados)/metabolismo
Fotoperíodo
Folhas de Planta/metabolismo
Amido/metabolismo
[Mh] Termos MeSH secundário: Arabidopsis/crescimento & desenvolvimento
Glucose-6-Fosfato/metabolismo
Fosforilação
Plastídeos/metabolismo
Água
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Arabidopsis Proteins); 0 (Glucans); 059QF0KO0R (Water); 56-73-5 (Glucose-6-Phosphate); 9005-25-8 (Starch); EC 2.7.9.- (Phosphotransferases (Paired Acceptors)); EC 2.7.9.- (alpha-glucan, water dikinase, Arabidopsis)
[Em] Mês de entrada:1511
[Cu] Atualização por classe:150430
[Lr] Data última revisão:
150430
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:150313
[St] Status:MEDLINE
[do] DOI:10.4161/psb.28892


  6 / 78 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:24905044
[Au] Autor:Chen X; Li M; Zhou L; Shen W; Algasan G; Fan Y; Wang Z
[Ad] Endereço:Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China. Electronic address: xzchen@jiangnan.edu.cn.
[Ti] Título:Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose.
[So] Source:Bioresour Technol;166:64-71, 2014 Aug.
[Is] ISSN:1873-2976
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Shikimate is a key intermediate for the synthesis of the neuraminidase inhibitors. Microbial production of shikimate and related derivatives has the benefit of cost reduction when compared to traditional methods. In this study, an overproducing shikimate Escherichia coli strain was developed by rationally engineering certain metabolic pathways. To achieve this, the shikimate pathway was blocked by deletion of shikimate kinases and quinic acid/shikimate dehydrogenase. EIICB(glc) protein involved in the phosphotransferase system, and acetic acid pathway were also removed to increase the amount of available phosphoenolpyruvate and decrease byproduct formation, respectively. Thereafter, three critical enzymes of mutated 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase (encoded by aroG(fbr)), PEP synthase (encoded by ppsA), and transketolase A (encoded by tktA) were modularly overexpressed and the resulting recombinant strain produced 1207 mg/L shikimate in shake flask cultures. Using the fed-batch process, 14.6g/L shikimate with a yield of 0.29 g/g glucose was generated in a 7-L bioreactor.
[Mh] Termos MeSH primário: Reatores Biológicos
Vias Biossintéticas/fisiologia
Escherichia coli/metabolismo
Engenharia Metabólica/métodos
Redes e Vias Metabólicas/fisiologia
Ácido Chiquímico/metabolismo
[Mh] Termos MeSH secundário: 3-Desoxi-7-Fosfo-Heptulonato Sintase
Oxirredutases do Álcool/genética
Fosfotransferases (Aceptor do Grupo Álcool)/genética
Fosfotransferases (Aceptores Pareados)
Ácido Quínico/metabolismo
Transcetolase
[Pt] Tipo de publicação:EVALUATION STUDIES; JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
058C04BGYI (Quinic Acid); 29MS2WI2NU (Shikimic Acid); EC 1.1.- (Alcohol Oxidoreductases); EC 1.1.1.25 (Shikimate dehydrogenase); EC 2.2.1.1 (Transketolase); EC 2.5.1.54 (3-Deoxy-7-Phosphoheptulonate Synthase); EC 2.7.1.- (Phosphotransferases (Alcohol Group Acceptor)); EC 2.7.1.71 (shikimate kinase); EC 2.7.9.- (Phosphotransferases (Paired Acceptors)); EC 2.7.9.2 (pyruvate, water dikinase)
[Em] Mês de entrada:1508
[Cu] Atualização por classe:140701
[Lr] Data última revisão:
140701
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:140607
[St] Status:MEDLINE


  7 / 78 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:24783851
[Au] Autor:Zang C; Zhao Z; Wang Y; Zhang Y; Ding J
[Ti] Título:[Effect of pps and aroGfbr overexpression on L-tryptophan production in Corynebacterium pekinense].
[So] Source:Wei Sheng Wu Xue Bao;54(1):24-32, 2014 Jan 04.
[Is] ISSN:0001-6209
[Cp] País de publicação:China
[La] Idioma:chi
[Ab] Resumo:OBJECTIVE: In order to redirect carbon flows into aromatic amino acids biosynthesis pathway and further improve the production of L-tryptophan in Corynebacterium pekinense PD-67, two schemes were implemented. First, the supply of phosphoenolpyruvate (PEP), one of precursors of L-tryptophan biosynthesis, was increased. Second, the feedback inhibition of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DS), a key enzyme in the aromatic amino acids biosynthesis, was relieved and the activity of DS was increased. METHODS: The phosphoenolpyruvate synthase gene (pps) was cloned from C. pekinense PD-67 chromosome by PCR and inserted into expression vector to construct a recombinant plasmid pXPPS; the aroG gene encoding DS isozymes was cloned from Escherichia coli chromosome by PCR and the mutation of Leu175Asp was introduced by site-directed mutagenesis using sequence-overlap extension PCR. The mutated gene named as aroGfbr was cloned to expression vector to construct a recombinant plasmid pXA; and the recombinant plasmid pXAPS co-expressing pps and aroGfbr was constructed. The three recombinant plasmids were transformed into PD-67 to generate the engineering strains PD-67/pXPS, PD-67/pXA and PD-67/pXAPS, respectively. The fermentation characteristics of the three engineering strains were investigated. RESULTS: The expression of pps and aroGfbr was confirmed by enzyme activity assays. The deregulation of feedback inhibition of AroGfbr was confirmed by determining DS activity in the presence of three aromatic amino acids. The overexpression of pps and aroGfbr resulted in an increase of L-tryptophan biosynthesis by 12.1% and 26.8%, respectively, while the co-expression of two genes increased the production of L-tryptophan by 35.9% in the engineering strain PD-67/pXAPS. CONCLUSION: Both of the overexpressions of the pps gene and aroGfbr gene can increase L-tryptophan biosynthesis, while the production was further improved by the co-expression of the two genes.
[Mh] Termos MeSH primário: Corynebacterium/genética
Corynebacterium/metabolismo
Engenharia Genética
Fosfotransferases (Aceptores Pareados)/genética
Triptofano/biossíntese
[Mh] Termos MeSH secundário: 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo
Corynebacterium/enzimologia
Expressão Gênica
Vetores Genéticos/genética
Fosfotransferases (Aceptores Pareados)/metabolismo
Análise de Sequência
[Pt] Tipo de publicação:ENGLISH ABSTRACT; JOURNAL ARTICLE
[Nm] Nome de substância:
8DUH1N11BX (Tryptophan); EC 2.5.1.54 (3-Deoxy-7-Phosphoheptulonate Synthase); EC 2.7.9.- (Phosphotransferases (Paired Acceptors)); EC 2.7.9.2 (pyruvate, water dikinase)
[Em] Mês de entrada:1405
[Cu] Atualização por classe:140502
[Lr] Data última revisão:
140502
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:140503
[St] Status:MEDLINE


  8 / 78 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:24697163
[Au] Autor:Mahlow S; Hejazi M; Kuhnert F; Garz A; Brust H; Baumann O; Fettke J
[Ad] Endereço:Plant Physiology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany; Biopolymers Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany.
[Ti] Título:Phosphorylation of transitory starch by α-glucan, water dikinase during starch turnover affects the surface properties and morphology of starch granules.
[So] Source:New Phytol;203(2):495-507, 2014 Jul.
[Is] ISSN:1469-8137
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Glucan, water dikinase (GWD) is a key enzyme of starch metabolism but the physico-chemical properties of starches isolated from GWD-deficient plants and their implications for starch metabolism have so far not been described. Transgenic Arabidopsis thaliana plants with reduced or no GWD activity were used to investigate the properties of starch granules. In addition, using various in vitro assays, the action of recombinant GWD, ß-amylase, isoamylase and starch synthase 1 on the surface of native starch granules was analysed. The internal structure of granules isolated from GWD mutant plants is unaffected, as thermal stability, allomorph, chain length distribution and density of starch granules were similar to wild-type. However, short glucan chain residues located at the granule surface dominate in starches of transgenic plants and impede GWD activity. A similarly reduced rate of phosphorylation by GWD was also observed in potato tuber starch fractions that differ in the proportion of accessible glucan chain residues at the granule surface. A model is proposed to explain the characteristic morphology of starch granules observed in GWD transgenic plants. The model postulates that the occupancy rate of single glucan chains at the granule surface limits accessibility to starch-related enzymes.
[Mh] Termos MeSH primário: Proteínas de Arabidopsis/metabolismo
Fosfotransferases (Aceptores Pareados)/metabolismo
Amido/química
Amido/metabolismo
[Mh] Termos MeSH secundário: Proteínas de Arabidopsis/genética
Glucosiltransferases/genética
Glucosiltransferases/metabolismo
Isoamilase/metabolismo
Proteínas de Transporte de Monossacarídeos/genética
Proteínas de Transporte de Monossacarídeos/metabolismo
Mutação
Fosforilação
Fosfotransferases (Aceptores Pareados)/genética
Plantas Geneticamente Modificadas
Solanum tuberosum
Amido/genética
Amido/ultraestrutura
Propriedades de Superfície
beta-Amilase/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Arabidopsis Proteins); 0 (Monosaccharide Transport Proteins); 9005-25-8 (Starch); EC 2.4.1.- (Glucosyltransferases); EC 2.4.1.- (SS1 protein, Arabidopsis); EC 2.7.9.- (Phosphotransferases (Paired Acceptors)); EC 2.7.9.- (SEX1 protein, Arabidopsis); EC 2.7.9.- (alpha-glucan, water dikinase, Arabidopsis); EC 3.2.1.2 (beta-Amylase); EC 3.2.1.68 (Isoamylase)
[Em] Mês de entrada:1505
[Cu] Atualização por classe:140619
[Lr] Data última revisão:
140619
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:140405
[St] Status:MEDLINE
[do] DOI:10.1111/nph.12801


  9 / 78 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:24479309
[Au] Autor:Pirog TP; Shevchuk TA; Mashchenko OIu; Parfeniuk SA; Iutinskaia GA
[Ti] Título:[Effect of growth factors and some microelements on biosurfactant synthesis of Acinetobacter calcoaceticus IMV B-7241].
[So] Source:Mikrobiol Z;75(5):18-26, 2013 Sep-Oct.
[Is] ISSN:1028-0987
[Cp] País de publicação:Ukraine
[La] Idioma:rus
[Ab] Resumo:The effect of yeast autolysate and microelements on synthesis of surface-active substances (SAS, biosurfactants) was investigated under cultivation of Acinetobacter calcoaceticus IMV B-7241 on various carbon substrates (n-hexadecane, ethanol, glycerol). The authors have shown a possibility to substitute the yeast autolysate and microelement mixture in the composition of ethanol- and n-hexadecane-containing media by copper sulfate (0.16 micromol/l) and iron sulfate (3.6 micromol/l), and in the medium with glycerol by 0.21 mmol/l of KCl, 38 micromol/l of zinc sulfate and 0.16 micromol/l of copper sulfate. Under such conditions of cultivation of the strain IMV B-7241 the SAS concentration exceeded that on the initial media, which contained the yeast autolysate and microelements, 1.2-1.6 times. The authors have also established the activating effect of low (0.01 mM) concentrations of Fe2+ on activity of the enzymes of biosynthesis of surface-active amino- (NADP-dependent glutamate dehydrogenase) and glycolipids (phosphoenolpyruvate(PhEP)-synthetase, PhEP-carboxykinase), as well as of anaplerotic reaction(PhEP-carboxylase). A necessity to introduce zinc cations into glycerol-containing medium is determined by their stimulating effect on activity of 4-dinitroso-N,N-dimethylaniline-dependent alcohol dehydrogenase--one of the enzymes of this substrate catabolism in A. calcoaceticus IMV B-7241.
[Mh] Termos MeSH primário: Acinetobacter calcoaceticus/metabolismo
Alcanos/metabolismo
Proteínas de Bactérias/metabolismo
Misturas Complexas/farmacologia
Etanol/metabolismo
Glicerol/metabolismo
Tensoativos/metabolismo
[Mh] Termos MeSH secundário: Álcool Desidrogenase/metabolismo
Misturas Complexas/química
Misturas Complexas/metabolismo
Sulfato de Cobre/metabolismo
Sulfato de Cobre/farmacologia
Compostos Ferrosos/metabolismo
Compostos Ferrosos/farmacologia
Desidrogenase de Glutamato (NADP+)/metabolismo
Glicolipídeos/biossíntese
Fosfoenolpiruvato Carboxilase/metabolismo
Fosfotransferases (Aceptores Pareados)/metabolismo
Leveduras/química
Sulfato de Zinco/metabolismo
Sulfato de Zinco/farmacologia
[Pt] Tipo de publicação:ENGLISH ABSTRACT; JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Alkanes); 0 (Bacterial Proteins); 0 (Complex Mixtures); 0 (Ferrous Compounds); 0 (Glycolipids); 0 (Surface-Active Agents); 39R4TAN1VT (ferrous sulfate); 3K9958V90M (Ethanol); 7733-02-0 (Zinc Sulfate); EC 1.1.1.1 (Alcohol Dehydrogenase); EC 1.4.1.4 (Glutamate Dehydrogenase (NADP+)); EC 2.7.9.- (Phosphotransferases (Paired Acceptors)); EC 2.7.9.2 (pyruvate, water dikinase); EC 4.1.1.31 (Phosphoenolpyruvate Carboxylase); F8Z00SHP6Q (n-hexadecane); LRX7AJ16DT (Copper Sulfate); PDC6A3C0OX (Glycerol)
[Em] Mês de entrada:1402
[Cu] Atualização por classe:141120
[Lr] Data última revisão:
141120
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:140201
[St] Status:MEDLINE


  10 / 78 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:23892291
[Au] Autor:Todor H; Sharma K; Pittman AM; Schmid AK
[Ad] Endereço:Department of Biology, Duke University, Durham, NC 27708, USA and Center for Systems Biology, Institute for Genome Science and Policy, Duke University, Durham, NC 27708, USA.
[Ti] Título:Protein-DNA binding dynamics predict transcriptional response to nutrients in archaea.
[So] Source:Nucleic Acids Res;41(18):8546-58, 2013 Oct.
[Is] ISSN:1362-4962
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Organisms across all three domains of life use gene regulatory networks (GRNs) to integrate varied stimuli into coherent transcriptional responses to environmental pressures. However, inferring GRN topology and regulatory causality remains a central challenge in systems biology. Previous work characterized TrmB as a global metabolic transcription factor in archaeal extremophiles. However, it remains unclear how TrmB dynamically regulates its ∼100 metabolic enzyme-coding gene targets. Using a dynamic perturbation approach, we elucidate the topology of the TrmB metabolic GRN in the model archaeon Halobacterium salinarum. Clustering of dynamic gene expression patterns reveals that TrmB functions alone to regulate central metabolic enzyme-coding genes but cooperates with various regulators to control peripheral metabolic pathways. Using a dynamical model, we predict gene expression patterns for some TrmB-dependent promoters and infer secondary regulators for others. Our data suggest feed-forward gene regulatory topology for cobalamin biosynthesis. In contrast, purine biosynthesis appears to require TrmB-independent regulators. We conclude that TrmB is an important component for mediating metabolic modularity, integrating nutrient status and regulating gene expression dynamics alone and in concert with secondary regulators.
[Mh] Termos MeSH primário: Proteínas Arqueais/metabolismo
Regulação da Expressão Gênica em Archaea
Redes Reguladoras de Genes
Halobacterium salinarum/genética
Fatores de Transcrição/metabolismo
[Mh] Termos MeSH secundário: Glucose/metabolismo
Halobacterium salinarum/metabolismo
Fosfotransferases (Aceptores Pareados)/genética
Regiões Promotoras Genéticas
Transcrição Genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
[Nm] Nome de substância:
0 (Archaeal Proteins); 0 (Transcription Factors); EC 2.7.9.- (Phosphotransferases (Paired Acceptors)); EC 2.7.9.2 (pyruvate, water dikinase); IY9XDZ35W2 (Glucose)
[Em] Mês de entrada:1312
[Cu] Atualização por classe:150423
[Lr] Data última revisão:
150423
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:130730
[St] Status:MEDLINE
[do] DOI:10.1093/nar/gkt659



página 1 de 8 ir para página                    
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde