Base de dados : MEDLINE
Pesquisa : D08.811.913.696.900.150 [Categoria DeCS]
Referências encontradas : 169 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 17 ir para página                         

  1 / 169 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28673963
[Au] Autor:Han GS; Carman GM
[Ad] Endereço:From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901.
[Ti] Título:Yeast -encoded phosphatidate phosphatase controls the expression of -encoded phosphatidylserine synthase for membrane phospholipid synthesis.
[So] Source:J Biol Chem;292(32):13230-13242, 2017 Aug 11.
[Is] ISSN:1083-351X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The -encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in , exerts a negative regulatory effect on the level of phosphatidate used for the synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of -encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by Truncation analysis and site-directed mutagenesis of the promoter indicated that Cho1 expression in the Δ mutant is induced through the inositol-sensitive upstream activation sequence (UAS ), a -acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a UAS mutation suppressed Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the -encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis.
[Mh] Termos MeSH primário: Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo
Regulação Fúngica da Expressão Gênica
Modelos Biológicos
Fosfatidato Fosfatase/metabolismo
Proteínas Repressoras/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
Fatores de Transcrição/metabolismo
[Mh] Termos MeSH secundário: Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/química
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética
Deleção de Genes
Proteínas de Fluorescência Verde/genética
Proteínas de Fluorescência Verde/metabolismo
Mutagênese Sítio-Dirigida
Mutação
Fragmentos de Peptídeos/química
Fragmentos de Peptídeos/genética
Fragmentos de Peptídeos/metabolismo
Fosfatidato Fosfatase/química
Fosfatidato Fosfatase/genética
Fosfolipídeos/metabolismo
Regiões Promotoras Genéticas
Transporte Proteico
Proteínas Recombinantes de Fusão/química
Proteínas Recombinantes de Fusão/metabolismo
Proteínas Recombinantes/química
Proteínas Recombinantes/metabolismo
Proteínas Repressoras/genética
Elementos de Resposta
Saccharomyces cerevisiae/citologia
Saccharomyces cerevisiae/enzimologia
Saccharomyces cerevisiae/crescimento & desenvolvimento
Saccharomyces cerevisiae/fisiologia
Proteínas de Saccharomyces cerevisiae/química
Proteínas de Saccharomyces cerevisiae/genética
Fatores de Transcrição/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Basic Helix-Loop-Helix Transcription Factors); 0 (CHO1 protein, S cerevisiae); 0 (DGK1 protein, S cerevisiae); 0 (INO2 protein, S cerevisiae); 0 (INO4 protein, S cerevisiae); 0 (OPI1 protein, S cerevisiae); 0 (Peptide Fragments); 0 (Phospholipids); 0 (Recombinant Fusion Proteins); 0 (Recombinant Proteins); 0 (Repressor Proteins); 0 (Saccharomyces cerevisiae Proteins); 0 (Transcription Factors); 147336-22-9 (Green Fluorescent Proteins); EC 2.7.8.8 (CDPdiacylglycerol-Serine O-Phosphatidyltransferase); EC 3.1.3.4 (PAH1 protein, S cerevisiae); EC 3.1.3.4 (Phosphatidate Phosphatase)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170825
[Lr] Data última revisão:
170825
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170705
[St] Status:MEDLINE
[do] DOI:10.1074/jbc.M117.801720


  2 / 169 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28158422
[Au] Autor:Cassilly CD; Farmer AT; Montedonico AE; Smith TK; Campagna SR; Reynolds TB
[Ad] Endereço:Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
[Ti] Título:Role of phosphatidylserine synthase in shaping the phospholipidome of Candida albicans.
[So] Source:FEMS Yeast Res;17(2), 2017 Mar 01.
[Is] ISSN:1567-1364
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Phosphatidylserine (PS) synthase (Cho1p) and the PS decarboxylase enzymes (Psd1p and Psd2p), which synthesize PS and phosphatidylethanolamine (PE), respectively, are crucial for Candida albicans virulence. Mutations that disrupt these enzymes compromise virulence. These enzymes are part of the cytidine diphosphate-diacylglycerol pathway (i.e. de novo pathway) for phospholipid synthesis. Understanding how losses of PS and/or PE synthesis pathways affect the phospholipidome of Candida is important for fully understanding how these enzymes impact virulence. The cho1Δ/Δ and psd1Δ/Δ psd2Δ/Δ mutations cause similar changes in levels of phosphatidic acid, phosphatidylglycerol, phosphatidylinositol and PS. However, only slight changes were seen in PE and phosphatidylcholine (PC). This finding suggests that the alternative mechanism for making PE and PC, the Kennedy pathway, can compensate for loss of the de novo synthesis pathway. Candida albicans Cho1p, the lipid biosynthetic enzyme with the most potential as a drug target, has been biochemically characterized, and analysis of its substrate specificity and kinetics reveal that these are similar to those previously published for Saccharomyces cerevisiae Cho1p.
[Mh] Termos MeSH primário: CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo
Candida albicans/enzimologia
Candida albicans/metabolismo
Fosfolipídeos/metabolismo
[Mh] Termos MeSH secundário: CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética
Candida albicans/genética
Deleção de Genes
Cinética
Especificidade por Substrato
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Phospholipids); EC 2.7.8.8 (CDPdiacylglycerol-Serine O-Phosphatidyltransferase)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170802
[Lr] Data última revisão:
170802
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170204
[St] Status:MEDLINE
[do] DOI:10.1093/femsyr/fox007


  3 / 169 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28154205
[Au] Autor:Dey P; Su WM; Han GS; Carman GM
[Ad] Endereço:Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901.
[Ti] Título:Phosphorylation of lipid metabolic enzymes by yeast protein kinase C requires phosphatidylserine and diacylglycerol.
[So] Source:J Lipid Res;58(4):742-751, 2017 Apr.
[Is] ISSN:1539-7262
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Protein kinase C in , i.e., Pkc1, is an enzyme that plays an important role in signal transduction and the regulation of lipid metabolic enzymes. Pkc1 is structurally similar to its counterparts in higher eukaryotes, but its requirement of phosphatidylserine (PS) and diacylglycerol (DAG) for catalytic activity has been unclear. In this work, we examined the role of these lipids in Pkc1 activity with protein and peptide substrates. In agreement with previous findings, yeast Pkc1 did not require PS and DAG for its activity on the peptide substrates derived from lipid metabolic proteins such as Pah1 [phosphatidate (PA) phosphatase], Nem1 (PA phosphatase phosphatase), and Spo7 (protein phosphatase regulatory subunit). However, the lipids were required for Pkc1 activity on the protein substrates Pah1, Nem1, and Spo7. Compared with DAG, PS had a greater effect on Pkc1 activity, and its dose-dependent interaction with the protein kinase was shown by the liposome binding assay. The Pkc1-mediated degradation of Pah1 was attenuated in the Δ mutant, which is deficient in PS synthase, supporting the notion that the phospholipid regulates Pkc1 activity in vivo.
[Mh] Termos MeSH primário: Diglicerídeos/metabolismo
Metabolismo dos Lipídeos/genética
Fosfatidato Fosfatase/metabolismo
Proteína Quinase C/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
[Mh] Termos MeSH secundário: CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo
Proteínas de Membrana/metabolismo
Proteínas Nucleares/metabolismo
Peptídeos/metabolismo
Fosfatidato Fosfatase/genética
Fosfatidilserinas/metabolismo
Fosforilação
Proteína Quinase C/genética
Saccharomyces cerevisiae/enzimologia
Proteínas de Saccharomyces cerevisiae/genética
Especificidade por Substrato
Triglicerídeos/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (CHO1 protein, S cerevisiae); 0 (Diglycerides); 0 (Membrane Proteins); 0 (Nem1 protein, S cerevisiae); 0 (Nuclear Proteins); 0 (Peptides); 0 (Phosphatidylserines); 0 (SPO7 protein, S cerevisiae); 0 (Saccharomyces cerevisiae Proteins); 0 (Triglycerides); EC 2.7.11.13 (PKC1 protein, S cerevisiae); EC 2.7.11.13 (Protein Kinase C); EC 2.7.8.8 (CDPdiacylglycerol-Serine O-Phosphatidyltransferase); EC 3.1.3.4 (PAH1 protein, S cerevisiae); EC 3.1.3.4 (Phosphatidate Phosphatase)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170906
[Lr] Data última revisão:
170906
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170204
[St] Status:MEDLINE
[do] DOI:10.1194/jlr.M075036


  4 / 169 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28119445
[Au] Autor:Kannan M; Lahiri S; Liu LK; Choudhary V; Prinz WA
[Ad] Endereço:Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.
[Ti] Título:Phosphatidylserine synthesis at membrane contact sites promotes its transport out of the ER.
[So] Source:J Lipid Res;58(3):553-562, 2017 Mar.
[Is] ISSN:1539-7262
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Close contacts between organelles, often called membrane contact sites (MCSs), are regions where lipids are exchanged between organelles. Here, we identify a novel mechanism by which cells promote phospholipid exchange at MCSs. Previous studies have shown that phosphatidylserine (PS) synthase activity is highly enriched in portions of the endoplasmic reticulum (ER) in contact with mitochondria. The objective of this study was to determine whether this enrichment promotes PS transport out of the ER. We found that PS transport to mitochondria was more efficient when PS synthase was fused to a protein in the ER at ER-mitochondria contacts than when it was fused to a protein in all portions of the ER. Inefficient PS transport to mitochondria was corrected by increasing tethering between these organelles. PS transport to endosomes was similarly enhanced by PS production in regions of the ER in contact with endosomes. Together, these findings indicate that PS production at MCSs promotes PS transport out of the ER and suggest that phospholipid production at MCSs may be a general mechanism of channeling lipids to specific cellular compartments.
[Mh] Termos MeSH primário: CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética
Retículo Endoplasmático/metabolismo
Metabolismo dos Lipídeos/genética
Fosfatidilserinas/biossíntese
Proteínas de Saccharomyces cerevisiae/genética
[Mh] Termos MeSH secundário: Proteínas de Bactérias/genética
Transporte Biológico/genética
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo
Membrana Celular/química
Membrana Celular/enzimologia
Retículo Endoplasmático/enzimologia
Endossomos/metabolismo
Escherichia coli/enzimologia
Glicosiltransferases/genética
Lipogênese/genética
Mitocôndrias/genética
Mitocôndrias/metabolismo
Membranas Mitocondriais/enzimologia
Fosfatidilserinas/química
Fosfatidilserinas/metabolismo
Saccharomyces cerevisiae/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (CHO1 protein, S cerevisiae); 0 (Phosphatidylserines); 0 (Saccharomyces cerevisiae Proteins); EC 2.4.- (Glycosyltransferases); EC 2.4.1.- (PssA protein, Rhizobium leguminosarum); EC 2.7.8.8 (CDPdiacylglycerol-Serine O-Phosphatidyltransferase)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170828
[Lr] Data última revisão:
170828
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170126
[St] Status:MEDLINE
[do] DOI:10.1194/jlr.M072959


  5 / 169 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:27183222
[Au] Autor:Cassilly CD; Maddox MM; Cherian PT; Bowling JJ; Hamann MT; Lee RE; Reynolds TB
[Ad] Endereço:Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America.
[Ti] Título:SB-224289 Antagonizes the Antifungal Mechanism of the Marine Depsipeptide Papuamide A.
[So] Source:PLoS One;11(5):e0154932, 2016.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:In order to expand the repertoire of antifungal compounds a novel, high-throughput phenotypic drug screen targeting fungal phosphatidylserine (PS) synthase (Cho1p) was developed based on antagonism of the toxin papuamide A (Pap-A). Pap-A is a cyclic depsipeptide that binds to PS in the membrane of wild-type Candida albicans, and permeabilizes its plasma membrane, ultimately causing cell death. Organisms with a homozygous deletion of the CHO1 gene (cho1ΔΔ) do not produce PS and are able to survive in the presence of Pap-A. Using this phenotype (i.e. resistance to Pap-A) as an indicator of Cho1p inhibition, we screened over 5,600 small molecules for Pap-A resistance and identified SB-224289 as a positive hit. SB-224289, previously reported as a selective human 5-HT1B receptor antagonist, also confers resistance to the similar toxin theopapuamide (TPap-A), but not to other cytotoxic depsipeptides tested. Structurally similar molecules and truncated variants of SB-224289 do not confer resistance to Pap-A, suggesting that the toxin-blocking ability of SB-224289 is very specific. Further biochemical characterization revealed that SB-224289 does not inhibit Cho1p, indicating that Pap-A resistance is conferred by another undetermined mechanism. Although the mode of resistance is unclear, interaction between SB-224289 and Pap-A or TPap-A suggests this screening assay could be adapted for discovering other compounds which could antagonize the effects of other environmentally- or medically-relevant depsipeptide toxins.
[Mh] Termos MeSH primário: Antifúngicos/farmacologia
Depsipeptídeos/farmacologia
Piperidonas/farmacologia
Compostos de Espiro/farmacologia
[Mh] Termos MeSH secundário: Antifúngicos/química
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/antagonistas & inibidores
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo
Candida albicans/efeitos dos fármacos
Depsipeptídeos/química
Antagonismo de Drogas
Descoberta de Drogas
Farmacorresistência Fúngica
Ensaios de Triagem em Larga Escala
Testes de Sensibilidade Microbiana
Estrutura Molecular
Piperidonas/química
Compostos de Espiro/química
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Antifungal Agents); 0 (Depsipeptides); 0 (Piperidones); 0 (SB 22489G); 0 (Spiro Compounds); 0 (papuamide A); 0 (theopapuamide); EC 2.7.8.8 (CDPdiacylglycerol-Serine O-Phosphatidyltransferase)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:170707
[Lr] Data última revisão:
170707
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160517
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0154932


  6 / 169 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:27055010
[Au] Autor:Ma J; Cheng Z; Chen J; Shen J; Zhang B; Ren Y; Ding Y; Zhou Y; Zhang H; Zhou K; Wang JL; Lei C; Zhang X; Guo X; Gao H; Bao Y; Wan JM
[Ad] Endereço:National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
[Ti] Título:Phosphatidylserine Synthase Controls Cell Elongation Especially in the Uppermost Internode in Rice by Regulation of Exocytosis.
[So] Source:PLoS One;11(4):e0153119, 2016.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The uppermost internode is one of the fastest elongating organs in rice, and is expected to require an adequate supply of cell-wall materials and enzymes to the cell surface to enhance mechanical strength. Although it has been reported that the phenotype of shortened uppermost internode 1 (sui1) is caused by mutations in PHOSPHATIDYLSERINE SYNTHASE (OsPSS), the underlying mechanism remains unclear. Here we show that the OsPSS-1, as a gene expressed predominantly in elongating cells, regulates post-Golgi vesicle secretion to intercellular spaces. Mutation of OsPSS-1 leads to compromised delivery of CESA4 and secGFP towards the cell surface, resulting in weakened intercellular adhesion and disorganized cell arrangement in parenchyma. The phenotype of sui1-4 is caused largely by the reduction in cellulose contents in the whole plant and detrimental delivery of pectins in the uppermost internode. We found that OsPSS-1 and its potential product PS (phosphatidylserine) localized to organelles associated with exocytosis. These results together suggest that OsPSS-1 plays a potential role in mediating cell expansion by regulating secretion of cell wall components.
[Mh] Termos MeSH primário: CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética
Exocitose
Oryza/crescimento & desenvolvimento
[Mh] Termos MeSH secundário: CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo
Parede Celular/metabolismo
Celulose/metabolismo
Mutação
Organelas/metabolismo
Oryza/enzimologia
Oryza/genética
Pectinas
Fenótipo
Proteínas de Plantas/genética
Proteínas de Plantas/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Pectins); 0 (Plant Proteins); 9004-34-6 (Cellulose); EC 2.7.8.8 (CDPdiacylglycerol-Serine O-Phosphatidyltransferase)
[Em] Mês de entrada:1609
[Cu] Atualização por classe:170220
[Lr] Data última revisão:
170220
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160408
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0153119


  7 / 169 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:26374481
[Au] Autor:Zhang W; Liu J; Hu X; Li P; Leak RK; Gao Y; Chen J
[Ad] Endereço:From the State Key Laboratory of Medical Neurobiology, Institute of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China (W.Z., J.L., X.H., P.L., Y.G., J.C.); Center of Cerebrovascular Disease Research, Department of Neurology, University of Pitt
[Ti] Título:n-3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling.
[So] Source:Stroke;46(10):2943-50, 2015 Oct.
[Is] ISSN:1524-4628
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:BACKGROUND AND PURPOSE: Omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate neonatal hypoxic/ischemic (H/I) brain damage, but the underlying mechanisms are not fully understood. This study tested the hypothesis that n-3 PUFAs enhance Akt-dependent prosurvival signaling by promoting the biosynthesis of phosphatidylserine in neuronal cell membranes. METHODS: Dietary n-3 PUFA supplementation was initiated on the second day of pregnancy in dams. H/I was induced in 7-day-old rat pups by ipsilateral common carotid artery occlusion followed by hypoxia (8% oxygen for 2.5 hours). Neurological outcomes, brain tissue loss, cell death, and the activation of signaling events were assessed after H/I. The effects of n-3 PUFAs (docosahexaenoic acid and eicosapentaenoic acid) on oxygen-glucose deprivation-induced cell death and the underlying mechanism of protection were also examined in primary cortical neuron cultures. RESULTS: n-3 PUFAs reduced brain tissue loss at 7 days after H/I and improved neurological outcomes, whereas inhibition of PI3K/Akt signaling by LY294002 partially abrogated this neuroprotective effect. Docosahexaenoic acid/eicosapentaenoic acid also prevented ischemic neuronal death through the Akt prosurvival pathway in vitro. Furthermore, docosahexaenoic acid/eicosapentaenoic acid increased the production of phosphatidylserine, the major membrane-bound phospholipids, after ischemia both in vitro and in vivo. A reduction in membrane phosphatidylserine by shRNA-mediated knockdown of phosphatidylserine synthetase-1 attenuated Akt activation and neuronal survival after docosahexaenoic acid/eicosapentaenoic acid treatment in the oxygen-glucose deprivation model. CONCLUSIONS: n-3 PUFAs robustly protect against H/I-induced brain damage in neonates by activating Akt prosurvival pathway in compromised neurons. In addition, n-3 PUFAs promote the formation of membrane phosphatidylserine, thereby promoting Akt activity and improving cellular survival.
[Mh] Termos MeSH primário: Encéfalo/efeitos dos fármacos
Ácidos Graxos Ômega-3/farmacologia
Hipóxia-Isquemia Encefálica/metabolismo
Neurônios/efeitos dos fármacos
Fosfatidilserinas/biossíntese
Proteínas Proto-Oncogênicas c-akt/metabolismo
[Mh] Termos MeSH secundário: Animais
Animais Recém-Nascidos
Encéfalo/patologia
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética
Morte Celular/efeitos dos fármacos
Membrana Celular/efeitos dos fármacos
Membrana Celular/metabolismo
Células Cultivadas
Ácidos Docosa-Hexaenoicos/farmacologia
Ácido Eicosapentaenoico/farmacologia
Técnicas de Silenciamento de Genes
Hipóxia-Isquemia Encefálica/patologia
Técnicas In Vitro
Neurônios/metabolismo
Fosfatidilinositol 3-Quinases/antagonistas & inibidores
RNA Interferente Pequeno
Ratos
Ratos Sprague-Dawley
Transdução de Sinais/efeitos dos fármacos
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; RESEARCH SUPPORT, NON-U.S. GOV'T; RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
[Nm] Nome de substância:
0 (Fatty Acids, Omega-3); 0 (Phosphatidylserines); 0 (RNA, Small Interfering); 25167-62-8 (Docosahexaenoic Acids); AAN7QOV9EA (Eicosapentaenoic Acid); EC 2.7.1.- (Phosphatidylinositol 3-Kinases); EC 2.7.11.1 (Proto-Oncogene Proteins c-akt); EC 2.7.8.8 (CDPdiacylglycerol-Serine O-Phosphatidyltransferase)
[Em] Mês de entrada:1512
[Cu] Atualização por classe:161122
[Lr] Data última revisão:
161122
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:150917
[St] Status:MEDLINE
[do] DOI:10.1161/STROKEAHA.115.010815


  8 / 169 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:26303578
[Au] Autor:Carmona-Antoñanzas G; Taylor JF; Martinez-Rubio L; Tocher DR
[Ad] Endereço:University of Stirling, School of Natural Sciences, Institute of Aquaculture, FK9 4LA Stirling, Scotland, UK. Electronic address: gec1@stir.ac.uk.
[Ti] Título:Molecular mechanism of dietary phospholipid requirement of Atlantic salmon, Salmo salar, fry.
[So] Source:Biochim Biophys Acta;1851(11):1428-41, 2015 Nov.
[Is] ISSN:0006-3002
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:The phospholipid (PL) requirement in fish is revealed by enhanced performance when larvae are provided PL-enriched diets. To elucidate the molecular mechanism underlying PL requirement in Atlantic salmon, Salmo salar, were fed a minimal PL diet and tissue samples from major lipid metabolic sites were dissected from fry and parr. In silico analysis and cloning techniques demonstrated that salmon possess a full set of enzymes for the endogenous production of PL. The gene expression data indicated that major PL biosynthetic genes of phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn) and phosphatidylinositol (PtdIns) display lower expression in intestine during the early developmental stage (fry). This is consistent with the hypothesis that the intestine of salmon is immature at the early developmental stage with limited capacity for endogenous PL biosynthesis. The results also indicate that intact PtdCho, PtdEtn and PtdIns are required in the diet at this stage. PtdCho and sphingomyelin constitute the predominant PL in chylomicrons, involved in the transport of dietary lipids from the intestine to the rest of the body. As sphingomyelin can be produced from PtdCho in intestine of fry, our findings suggest that supplementation of dietary PtdCho alone during early developmental stages of Atlantic salmon would be sufficient to promote chylomicron formation. This would support efficient transport of dietary lipids, including PL precursors, from the intestine to the liver where biosynthesis of PtdEtn, PtdSer, and PtdIns is not compromised as in intestine facilitating efficient utilisation of dietary energy and the endogenous production of membrane PL for the rapidly growing and developing animal.
[Mh] Termos MeSH primário: CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo
Gorduras na Dieta/metabolismo
Proteínas de Peixes/metabolismo
Salmo salar/metabolismo
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Animais
Transporte Biológico
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética
Quilomícrons/biossíntese
Gorduras na Dieta/administração & dosagem
Proteínas de Peixes/genética
Regulação da Expressão Gênica no Desenvolvimento
Intestinos/crescimento & desenvolvimento
Intestinos/metabolismo
Larva/genética
Larva/crescimento & desenvolvimento
Larva/metabolismo
Fígado/crescimento & desenvolvimento
Fígado/metabolismo
Anotação de Sequência Molecular
Dados de Sequência Molecular
Fosfatidilcolinas/biossíntese
Fosfatidiletanolaminas/biossíntese
Fosfatidilinositóis/biossíntese
Salmo salar/genética
Salmo salar/crescimento & desenvolvimento
Alinhamento de Sequência
Esfingomielinas/biossíntese
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Chylomicrons); 0 (Dietary Fats); 0 (Fish Proteins); 0 (Phosphatidylcholines); 0 (Phosphatidylethanolamines); 0 (Phosphatidylinositols); 0 (Sphingomyelins); 39382-08-6 (phosphatidylethanolamine); EC 2.7.8.8 (CDPdiacylglycerol-Serine O-Phosphatidyltransferase)
[Em] Mês de entrada:1512
[Cu] Atualização por classe:161126
[Lr] Data última revisão:
161126
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:150826
[St] Status:MEDLINE


  9 / 169 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:26024904
[Au] Autor:Wolf JM; Espadas J; Luque-Garcia J; Reynolds T; Casadevall A
[Ad] Endereço:Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
[Ti] Título:Lipid Biosynthetic Genes Affect Candida albicans Extracellular Vesicle Morphology, Cargo, and Immunostimulatory Properties.
[So] Source:Eukaryot Cell;14(8):745-54, 2015 Aug.
[Is] ISSN:1535-9786
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Microbial secretion is integral for regulating cell homeostasis as well as releasing virulence factors during infection. The genes encoding phosphatidylserine synthase (CHO1) and phosphatidylserine decarboxylase (PSD1 and PSD2) are Candida albicans genes involved in phospholipid biosynthesis, and mutations in these genes affect mitochondrial function, cell wall thickness, and virulence in mice. We tested the roles of these genes in several agar-based secretion assays and observed that the cho1Δ/Δ and psd1Δ/Δ psd2Δ/Δ strains manifested less protease and phospholipase activity. Since extracellular vesicles (EVs) are surrounded by a lipid membrane, we investigated the effects of these mutations on EV structure, composition, and biological activity. The cho1Δ/Δ mutant releases EVs comparable in size to wild-type EVs, but EVs from the psd1Δ/Δ psd2Δ/Δ strain are much larger than those from the wild type, including a population of >100-nm EVs not observed in the EVs from the wild type. Proteomic analysis revealed that EVs from both mutants had a significantly different protein cargo than that of EVs from the wild type. EVs were tested for their ability to activate NF-κB in bone marrow-derived macrophage cells. While wild-type and psd1Δ/Δ psd2Δ/Δ mutant-derived EVs activated NF-κB, the cho1Δ/Δ mutant-derived EV did not. These studies indicate that the presence and absence of these C. albicans genes have qualitative and quantitative effects on EV size, composition, and immunostimulatory phenotypes that highlight a complex interplay between lipid metabolism and vesicle production.
[Mh] Termos MeSH primário: Adjuvantes Imunológicos/genética
Adjuvantes Imunológicos/metabolismo
Candida albicans/genética
Candida albicans/metabolismo
Vesículas Extracelulares/genética
Vesículas Extracelulares/metabolismo
Lipídeos/genética
[Mh] Termos MeSH secundário: Animais
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo
Carboxiliases/genética
Carboxiliases/metabolismo
Linhagem Celular
Parede Celular/genética
Parede Celular/metabolismo
Proteínas Fúngicas/genética
Proteínas Fúngicas/metabolismo
Macrófagos/microbiologia
Camundongos
Proteômica/métodos
Virulência/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Adjuvants, Immunologic); 0 (Fungal Proteins); 0 (Lipids); EC 2.7.8.8 (CDPdiacylglycerol-Serine O-Phosphatidyltransferase); EC 4.1.1.- (Carboxy-Lyases); EC 4.1.1.65 (phosphatidylserine decarboxylase)
[Em] Mês de entrada:1604
[Cu] Atualização por classe:160103
[Lr] Data última revisão:
160103
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:150531
[St] Status:MEDLINE
[do] DOI:10.1128/EC.00054-15


  10 / 169 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:25318672
[Au] Autor:He Y; Yam C; Pomraning K; Chin JS; Yew JY; Freitag M; Oliferenko S
[Ad] Endereço:Temasek Life Sciences Laboratory, 117604 Singapore Department of Biological Sciences, National University of Singapore, 117543 Singapore.
[Ti] Título:Increase in cellular triacylglycerol content and emergence of large ER-associated lipid droplets in the absence of CDP-DG synthase function.
[So] Source:Mol Biol Cell;25(25):4083-95, 2014 Dec 15.
[Is] ISSN:1939-4586
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Excess fatty acids and sterols are stored as triacylglycerols and sterol esters in specialized cellular organelles, called lipid droplets. Understanding what determines the cellular amount of neutral lipids and their packaging into lipid droplets is of fundamental and applied interest. Using two species of fission yeast, we show that cycling cells deficient in the function of the ER-resident CDP-DG synthase Cds1 exhibit markedly increased triacylglycerol content and assemble large lipid droplets closely associated with the ER membranes. We demonstrate that these unusual structures recruit the triacylglycerol synthesis machinery and grow by expansion rather than by fusion. Our results suggest that interfering with the CDP-DG route of phosphatidic acid utilization rewires cellular metabolism to adopt a triacylglycerol-rich lifestyle reliant on the Kennedy pathway.
[Mh] Termos MeSH primário: CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo
Retículo Endoplasmático/metabolismo
Gotículas Lipídicas/metabolismo
Proteínas de Schizosaccharomyces pombe/metabolismo
Schizosaccharomyces/metabolismo
Triglicerídeos/metabolismo
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Genes Fúngicos
Dados de Sequência Molecular
Schizosaccharomyces/crescimento & desenvolvimento
Schizosaccharomyces/ultraestrutura
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; RESEARCH SUPPORT, NON-U.S. GOV'T; RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
[Nm] Nome de substância:
0 (Schizosaccharomyces pombe Proteins); 0 (Triglycerides); EC 2.7.8.8 (CDPdiacylglycerol-Serine O-Phosphatidyltransferase)
[Em] Mês de entrada:1508
[Cu] Atualização por classe:170220
[Lr] Data última revisão:
170220
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:141017
[St] Status:MEDLINE
[do] DOI:10.1091/mbc.E14-03-0832



página 1 de 17 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde