Base de dados : MEDLINE
Pesquisa : D09.698.365.180.180 [Categoria DeCS]
Referências encontradas : 1135 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 114 ir para página                         

  1 / 1135 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28886200
[Au] Autor:Zhang C; Acosta-Sampson L; Yu VY; Cate JHD
[Ad] Endereço:Department of Life Science, Tsinghua University, Beijing, China.
[Ti] Título:Screening of transporters to improve xylodextrin utilization in the yeast Saccharomyces cerevisiae.
[So] Source:PLoS One;12(9):e0184730, 2017.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The economic production of cellulosic biofuel requires efficient and full utilization of all abundant carbohydrates naturally released from plant biomass by enzyme cocktails. Recently, we reconstituted the Neurospora crassa xylodextrin transport and consumption system in Saccharomyces cerevisiae, enabling growth of yeast on xylodextrins aerobically. However, the consumption rate of xylodextrin requires improvement for industrial applications, including consumption in anaerobic conditions. As a first step in this improvement, we report analysis of orthologues of the N. crassa transporters CDT-1 and CDT-2. Transporter ST16 from Trichoderma virens enables faster aerobic growth of S. cerevisiae on xylodextrins compared to CDT-2. ST16 is a xylodextrin-specific transporter, and the xylobiose transport activity of ST16 is not inhibited by cellobiose. Other transporters identified in the screen also enable growth on xylodextrins including xylotriose. Taken together, these results indicate that multiple transporters might prove useful to improve xylodextrin utilization in S. cerevisiae. Efforts to use directed evolution to improve ST16 from a chromosomally-integrated copy were not successful, due to background growth of yeast on other carbon sources present in the selection medium. Future experiments will require increasing the baseline growth rate of the yeast population on xylodextrins, to ensure that the selective pressure exerted on xylodextrin transport can lead to isolation of improved xylodextrin transporters.
[Mh] Termos MeSH primário: Dextrinas/metabolismo
Saccharomyces cerevisiae/metabolismo
[Mh] Termos MeSH secundário: Celobiose/metabolismo
Celulose/metabolismo
Neurospora crassa/metabolismo
Saccharomyces cerevisiae/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Dextrins); 16462-44-5 (Cellobiose); 9004-34-6 (Cellulose)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171016
[Lr] Data última revisão:
171016
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170909
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0184730


  2 / 1135 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28873987
[Au] Autor:Goswami S; Das S; Datta S
[Ad] Endereço:Protein Engineering Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur 741246, India.
[Ti] Título:Understanding the role of residues around the active site tunnel towards generating a glucose-tolerant ß-glucosidase from Agrobacterium tumefaciens 5A.
[So] Source:Protein Eng Des Sel;30(7):523-530, 2017 Jul 01.
[Is] ISSN:1741-0134
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Most ß-glucosidases are subjected to inhibition by the final hydrolysis product glucose resulting in the accumulation of cellobiose and oligosaccharides. This accumulated cellobiose and oligosaccharides further inhibit the activities of endoglucanase and cellobiohydrolases, resulting in the inhibition of cellulose degradation and a more expensive biofuel. To elucidate the mechanism(s) of glucose tolerance, we designed and characterised six mutations of a moderately glucose-tolerant ß-glucosidase (H0HC94) from the mesophilic bacterium Agrobacterium tumefaciens 5A. The hydrophobicity and steric were varied across non-conserved residues in specific regions of the active site tunnel. In contrast to the uncompetitive inhibition of WT enzyme by glucose, C174V and H229S are competitively inhibited pointing towards a possible glucose-binding site in the protein at these positions. Increasing hydrophobicity at the +1 subsite and increasing hydrophobicity and steric at +2 subsites seemed to be critical for glucose tolerance for this BG. Additionally, in L178E, specific activity was 1.8 times higher on the natural substrate cellobiose while both W127F and L178E mutants showed an enhancement in thermostability. The kinetic stability of W127F, V176A, L178A and L178E also increased between 2- and 3-folds compared to WT. Our results indicate that while the structure between subsites +1 and +2 is critical for the glucose tolerance, the specific residues may not be identical across such enzymes.
[Mh] Termos MeSH primário: Agrobacterium tumefaciens/enzimologia
Glucose/química
beta-Glucosidase/química
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Sítios de Ligação
Celobiose/química
Celulose/química
Celulose 1,4-beta-Celobiosidase/química
Celulose 1,4-beta-Celobiosidase/genética
Hidrólise
Cinética
Especificidade por Substrato
beta-Glucosidase/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
16462-44-5 (Cellobiose); 9004-34-6 (Cellulose); EC 3.2.1.21 (beta-Glucosidase); EC 3.2.1.91 (Cellulose 1,4-beta-Cellobiosidase); IY9XDZ35W2 (Glucose)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171016
[Lr] Data última revisão:
171016
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170907
[St] Status:MEDLINE
[do] DOI:10.1093/protein/gzx039


  3 / 1135 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28535986
[Au] Autor:Parisutham V; Chandran SP; Mukhopadhyay A; Lee SK; Keasling JD
[Ad] Endereço:School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
[Ti] Título:Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries.
[So] Source:Bioresour Technol;239:496-506, 2017 Sep.
[Is] ISSN:1873-2976
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Complete hydrolysis of cellulose has been a key characteristic of biomass technology because of the limitation of industrial production hosts to use cellodextrin, the partial hydrolysis product of cellulose. Cellobiose, a ß-1,4-linked glucose dimer, is a major cellodextrin of the enzymatic hydrolysis (via endoglucanase and exoglucanase) of cellulose. Conversion of cellobiose to glucose is executed by ß-glucosidase. The complete extracellular hydrolysis of celluloses has several critical barriers in biomass technology. An alternative bioengineering strategy to make the bioprocessing less challenging is to engineer microbes with the abilities to hydrolyze and assimilate the cellulosic-hydrolysate cellodextrin. Microorganisms engineered to metabolize cellobiose rather than the monomeric glucose can provide several advantages for lignocellulose-based biorefineries. This review describes the recent advances and challenges in engineering efficient intracellular cellobiose metabolism in industrial hosts. This review also describes the limitations of and future prospectives in engineering intracellular cellobiose metabolism.
[Mh] Termos MeSH primário: Celobiose
Lignina
[Mh] Termos MeSH secundário: Reatores Biológicos
Celulose
Hidrólise
beta-Glucosidase
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
11132-73-3 (lignocellulose); 16462-44-5 (Cellobiose); 9004-34-6 (Cellulose); 9005-53-2 (Lignin); EC 3.2.1.21 (beta-Glucosidase)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171109
[Lr] Data última revisão:
171109
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170525
[St] Status:MEDLINE


  4 / 1135 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28500928
[Au] Autor:Kar B; Verma P; Patel GK; Sharma AK
[Ad] Endereço:Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247 667, India.
[Ti] Título:Molecular cloning, characterization and in silico analysis of a thermostable ß-glucosidase enzyme from Putranjiva roxburghii with a significant activity for cellobiose.
[So] Source:Phytochemistry;140:151-165, 2017 Aug.
[Is] ISSN:1873-3700
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The native Putranjiva roxburghii family 1 glycoside hydrolase enzyme showed ß-D-fucosidase activity in addition to ß-D-glucosidase and ß-D-galactosidase activities reported in our previous study. A single step concanvalin A affinity chromatography for native PRGH1 improved the yield and reduced the purification time. The PRGH1 gene was cloned and overexpressed in E. coli. The full length gene contained an ORF of 1617 bp encoding a polypeptide of 538 amino acids. The amino acid sequence of PRGH1 showed maximum similarities to ß-glucosidases and myrosinases. Both native and recombinant protein showed maximum hydrolytic activity for pNP-Fuc followed by pNP-Glc and pNP-Gal. Significant enzyme activity was also observed for cellobiose, however it decreased with increase in chain-length for glycan substrates. The enzyme showed significant resistant to D-glucose concentration up to 500 mM. Mutational studies confirmed the predicted catalytic acid/base Glu173 and nucleophile Glu389 as key residues for its activity. Moreover, Glu446 and Asn172 played essential role in substrate binding by interacting with the -1 subsite of substrates. Bioinformatic analysis suggested the possible reasons for the broad substrate specificity and other properties of the enzyme. PRGH1 had high sequence similarity towards S-glucosidase and may be involved in defence. The broad specificity, catalytic efficiency and thermostability make PRGH1 potentially an important industrial enzyme.
[Mh] Termos MeSH primário: Celobiose/metabolismo
Magnoliopsida/enzimologia
beta-Glucosidase/metabolismo
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Sequência de Bases
Clonagem Molecular
Simulação de Acoplamento Molecular
Estrutura Secundária de Proteína
Especificidade por Substrato
beta-Glucosidase/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
16462-44-5 (Cellobiose); EC 3.2.1.21 (beta-Glucosidase)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:171116
[Lr] Data última revisão:
171116
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170514
[St] Status:MEDLINE


  5 / 1135 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28420406
[Au] Autor:Cheng P; Liu B; Su Y; Hu Y; Hong Y; Yi X; Chen L; Su S; Chu JSC; Chen N; Xiong X
[Ad] Endereço:Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China. cp232@163.com.
[Ti] Título:Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains.
[So] Source:Microb Cell Fact;16(1):63, 2017 Apr 19.
[Is] ISSN:1475-2859
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:BACKGROUND: Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of ß-glucosidases. RESULTS: We isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and ß-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the ß-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing ß-glucosidase with higher cellobiose-hydrolyzing efficiencies. CONCLUSIONS: This study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels.
[Mh] Termos MeSH primário: Celobiose/metabolismo
Genoma Fúngico
Trichoderma/genética
Trichoderma/metabolismo
[Mh] Termos MeSH secundário: Biocombustíveis
Biomassa
Celulase/biossíntese
Celulase/genética
Celulase/metabolismo
Celulose/metabolismo
Fermentação
Variação Genética
Genômica
Hidrólise
Peptídeo Hidrolases/genética
Peptídeo Hidrolases/metabolismo
Análise de Sequência de DNA
Trichoderma/enzimologia
beta-Glucosidase/genética
beta-Glucosidase/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Biofuels); 16462-44-5 (Cellobiose); 9004-34-6 (Cellulose); EC 3.2.1.21 (beta-Glucosidase); EC 3.2.1.4 (Cellulase); EC 3.4.- (Peptide Hydrolases)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171108
[Lr] Data última revisão:
171108
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170420
[St] Status:MEDLINE
[do] DOI:10.1186/s12934-017-0680-2


  6 / 1135 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28389042
[Au] Autor:Chakraborty S; Singh PK; Paramashetti P
[Ad] Endereço:Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. Electronic address: saikat@che.iitkgp.ernet.in.
[Ti] Título:Microreactor-based mixing strategy suppresses product inhibition to enhance sugar yields in enzymatic hydrolysis for cellulosic biofuel production.
[So] Source:Bioresour Technol;237:99-107, 2017 Aug.
[Is] ISSN:1873-2976
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:A novel microreactor-based energy-efficient process of using complete convective mixing in a macroreactor till an optimal mixing time followed by no mixing in 200-400µl microreactors enhances glucose and reducing sugar yields by upto 35% and 29%, respectively, while saving 72-90% of the energy incurred on reactor mixing in the enzymatic hydrolysis of cellulose. Empirical exponential relations are provided for determining the optimal mixing time, during which convective mixing in the macroreactor promotes mass transport of the cellulase enzyme to the solid Avicel substrate, while the latter phase of no mixing in the microreactor suppresses product inhibition by preventing the inhibitors (glucose and cellobiose) from homogenizing across the reactor. Sugar yield increases linearly with liquid to solid height ratio (r ), irrespective of substrate loading and microreactor size, since large r allows the inhibitors to diffuse in the liquid away from the solids, thus reducing product inhibition.
[Mh] Termos MeSH primário: Biocombustíveis
Celulase
Hidrólise
[Mh] Termos MeSH secundário: Celobiose
Celulose
Glucose
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Biofuels); 16462-44-5 (Cellobiose); 9004-34-6 (Cellulose); EC 3.2.1.4 (Cellulase); IY9XDZ35W2 (Glucose)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171023
[Lr] Data última revisão:
171023
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170409
[St] Status:MEDLINE


  7 / 1135 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28285222
[Au] Autor:Wu L; Xu C; Li S; Liang J; Xu H; Xu Z
[Ad] Endereço:State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
[Ti] Título:Efficient production of lactulose from whey powder by cellobiose 2-epimerase in an enzymatic membrane reactor.
[So] Source:Bioresour Technol;233:305-312, 2017 Jun.
[Is] ISSN:1873-2976
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:In this study, the gene encoding cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus (CsCE) was successfully expressed in Bacillus subtilis WB800. After the fermentation medium optimization, the activity of recombinant strain was 4.5-fold higher than the original medium in a 7.5L fermentor. The optimal catalytic pH and temperature of crude CsCE were 7.0 and 80°C, respectively. An enzymatic synthesis of lactulose was developed using cheese-whey lactose as its substrate. The maximum conversion rate of whey powder obtained was 58.5% using 7.5 U/mL CsCE. The enzymatic membrane reactor system exhibited a great operational stability, confirmed with the higher lactose conversion (42.4%) after 10 batches. To our best knowledge, this is the first report of lactulose synthesis in food grade strain, which improve the food safety, and we not only realize the biological production of lactulose, but also make good use of industrial waste, which have positive impact on environment.
[Mh] Termos MeSH primário: Lactulose/metabolismo
[Mh] Termos MeSH secundário: Celobiose
Lactose
Racemases e Epimerases
Soro do Leite
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
16462-44-5 (Cellobiose); 4618-18-2 (Lactulose); EC 5.1.- (Racemases and Epimerases); J2B2A4N98G (Lactose)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170606
[Lr] Data última revisão:
170606
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170313
[St] Status:MEDLINE


  8 / 1135 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28252294
[Au] Autor:Kuschel B; Seitl I; Glück C; Mu W; Jiang B; Stressler T; Fischer L
[Ad] Endereço:Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim , Garbenstrasse 25, D-70599, Stuttgart, Germany.
[Ti] Título:Hidden Reaction: Mesophilic Cellobiose 2-Epimerases Produce Lactulose.
[So] Source:J Agric Food Chem;65(12):2530-2539, 2017 Mar 29.
[Is] ISSN:1520-5118
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Lactulose (4-O-ß-d-galactopyranosyl-d-fructofuranose) is a prebiotic sugar derived from the milk sugar lactose (4-O-ß-d-galactopyranosyl-d-glucopyranose). In our study we observed for the first time that known cellobiose 2-epimerases (CEs; EC 5.1.3.11) from mesophilic microorganisms were generally able to catalyze the isomerization reaction of lactose into lactulose. Commonly, CEs catalyze the C2-epimerization of d-glucose and d-mannose moieties at the reducing end of ß-1,4-glycosidic-linked oligosaccharides. Thus, epilactose (4-O-ß-d-galactopyranosyl-d-mannopyranose) is formed with lactose as substrate. So far, only four CEs, exclusively from thermophilic microorganisms, have been reported to additionally catalyze the isomerization reaction of lactose into lactulose. The specific isomerization activity of the seven CEs in this study ranged between 8.7 ± 0.1 and 1300 ± 37 pkat/mg. The results indicate that very likely all CEs are able to catalyze both the epimerization as well as the isomerization reaction, whereby the latter is performed at a comparatively much lower reaction rate.
[Mh] Termos MeSH primário: Proteínas de Bactérias/química
Carboidratos Epimerases/química
Celobiose/metabolismo
Lactulose/metabolismo
[Mh] Termos MeSH secundário: Proteínas de Bactérias/genética
Proteínas de Bactérias/metabolismo
Bacteroides/enzimologia
Bacteroides/genética
Biocatálise
Carboidratos Epimerases/genética
Carboidratos Epimerases/metabolismo
Celobiose/química
Estabilidade Enzimática
Flavobacterium/enzimologia
Flavobacterium/genética
Lactose/metabolismo
Lactulose/química
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 16462-44-5 (Cellobiose); 4618-18-2 (Lactulose); EC 5.1.3.- (Carbohydrate Epimerases); J2B2A4N98G (Lactose)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170627
[Lr] Data última revisão:
170627
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170303
[St] Status:MEDLINE
[do] DOI:10.1021/acs.jafc.6b05599


  9 / 1135 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28242654
[Au] Autor:Souza CA; Li S; Lin AZ; Boutrot F; Grossmann G; Zipfel C; Somerville SC
[Ad] Endereço:Energy Biosciences Institute (C.d.A.S., S.L., A.Z.L., S.C.S.) and Department of Plant and Microbial Biology (S.C.S.), University of California, Berkeley, California 94720.
[Ti] Título:Cellulose-Derived Oligomers Act as Damage-Associated Molecular Patterns and Trigger Defense-Like Responses.
[So] Source:Plant Physiol;173(4):2383-2398, 2017 Apr.
[Is] ISSN:1532-2548
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The plant cell wall, often the site of initial encounters between plants and their microbial pathogens, is composed of a complex mixture of cellulose, hemicellulose, and pectin polysaccharides as well as proteins. The concept of damage-associated molecular patterns (DAMPs) was proposed to describe plant elicitors like oligogalacturonides (OGs), which can be derived by the breakdown of the pectin homogalacturon by pectinases. OGs act via many of the same signaling steps as pathogen- or microbe-associated molecular patterns (PAMPs) to elicit defenses and provide protection against pathogens. Given both the complexity of the plant cell wall and the fact that many pathogens secrete a wide range of cell wall-degrading enzymes, we reasoned that the breakdown products of other cell wall polymers may be similarly biologically active as elicitors and may help to reinforce the perception of danger by plant cells. Our results indicate that oligomers derived from cellulose are perceived as signal molecules in Arabidopsis ( ), triggering a signaling cascade that shares some similarities to responses to well-known elicitors such as chitooligomers and OGs. However, in contrast to other known PAMPs/DAMPs, cellobiose stimulates neither detectable reactive oxygen species production nor callose deposition. Confirming our idea that both PAMPs and DAMPs are likely to cooccur at infection sites, cotreatments of cellobiose with flg22 or chitooligomers led to synergistic increases in gene expression. Thus, the perception of cellulose-derived oligomers may participate in cell wall integrity surveillance and represents an additional layer of signaling following plant cell wall breakdown during cell wall remodeling or pathogen attack.
[Mh] Termos MeSH primário: Arabidopsis/metabolismo
Parede Celular/metabolismo
Celulose/metabolismo
Oligossacarídeos/metabolismo
[Mh] Termos MeSH secundário: Arabidopsis/genética
Arabidopsis/microbiologia
Proteínas de Arabidopsis/genética
Parede Celular/genética
Parede Celular/microbiologia
Celobiose/metabolismo
Dissacarídeos/metabolismo
Resistência à Doença/genética
Perfilação da Expressão Gênica/métodos
Regulação da Expressão Gênica de Plantas
Interações Hospedeiro-Patógeno
Mutação
Pectinas/metabolismo
Doenças das Plantas/genética
Doenças das Plantas/microbiologia
Plantas Geneticamente Modificadas
Regiões Promotoras Genéticas/genética
Pseudomonas syringae/fisiologia
Reação em Cadeia da Polimerase Via Transcriptase Reversa
Plântulas/genética
Plântulas/metabolismo
Plântulas/microbiologia
Fatores de Transcrição/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Arabidopsis Proteins); 0 (Disaccharides); 0 (Oligosaccharides); 0 (Pectins); 0 (Transcription Factors); 0 (WRKY33 protein, Arabidopsis); 0 (oligogalacturonic acid); 16462-44-5 (Cellobiose); 89NA02M4RX (pectin); 9004-34-6 (Cellulose)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171016
[Lr] Data última revisão:
171016
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170301
[St] Status:MEDLINE
[do] DOI:10.1104/pp.16.01680


  10 / 1135 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28199749
[Au] Autor:Pan M; Kumaree KK; Shah NP
[Ad] Endereço:Food and Nutritional Science, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong.
[Ti] Título:Physiological Changes of Surface Membrane in Lactobacillus with Prebiotics.
[So] Source:J Food Sci;82(3):744-750, 2017 Mar.
[Is] ISSN:1750-3841
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Synbiotics are always considered to be beneficial in healthy manipulation of gut environment; however, the purpose of this research was to investigate the dominance of synbiotic over the individual potential of probiotics and prebiotics. Four different types of prebiotics, fructo-oligosaccharides, raffinose, inulin, and cellobiose, were evaluated based on their varying degree of polymerization, combined each with 2 different Lactobacilli strains, including Lactobacillus paracasei 276 and Lactobacillus plantarum WCFS1. The effects of synbiotics combination on the surface structure were evaluated by analyzing auto-aggregation, membrane hydrophobicity, and adhesion to Caco-2 cells. Our results showed that both Lactobacilli exhibited significantly greater degree of attachment to Caco-2 cells (23.31% and 16.85%, respectively) when using cellobiose as a substrate than with other prebiotics (P < 0.05). Intestinal adhesion ability was in correlation with the percent of auto-aggregation, both Lactobacillus exhibited higher percent of auto-aggregation in cellobiose compared to other prebiotics. These behavioral changes in terms of attachment and auto-aggregation were further supported with the changes noticed from infrared spectra (FT-IR).
[Mh] Termos MeSH primário: Aderência Bacteriana/efeitos dos fármacos
Membrana Celular/efeitos dos fármacos
Lactobacillus/efeitos dos fármacos
Oligossacarídeos/farmacologia
Prebióticos
Probióticos
Simbióticos
[Mh] Termos MeSH secundário: Células CACO-2
Membrana Celular/fisiologia
Celobiose/farmacologia
Frutose/farmacologia
Seres Humanos
Interações Hidrofóbicas e Hidrofílicas
Intestinos/microbiologia
Inulina/farmacologia
Lactobacillus/crescimento & desenvolvimento
Rafinose/farmacologia
Espectroscopia de Infravermelho com Transformada de Fourier
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Oligosaccharides); 0 (Prebiotics); 16462-44-5 (Cellobiose); 30237-26-4 (Fructose); 9005-80-5 (Inulin); N5O3QU595M (Raffinose)
[Em] Mês de entrada:1705
[Cu] Atualização por classe:170522
[Lr] Data última revisão:
170522
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170216
[St] Status:MEDLINE
[do] DOI:10.1111/1750-3841.13608



página 1 de 114 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde