Base de dados : MEDLINE
Pesquisa : D13.444.735.790 [Categoria DeCS]
Referências encontradas : 5923 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 593 ir para página                         

  1 / 5923 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29220437
[Au] Autor:Torres F; Arias-Carrasco R; Caris-Maldonado JC; Barral A; Maracaja-Coutinho V; De Queiroz ATL
[Ad] Endereço:Centro de Pesquisas Gonçalo Moniz (CPqGM), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.
[Ti] Título:LeishDB: a database of coding gene annotation and non-coding RNAs in Leishmania braziliensis.
[So] Source:Database (Oxford);2017, 2017 Jan 01.
[Is] ISSN:1758-0463
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Database URL: www.leishdb.com.
[Mh] Termos MeSH primário: Genes de Protozoários/genética
Leishmania braziliensis/genética
RNA não Traduzido/genética
Interface Usuário-Computador
[Mh] Termos MeSH secundário: Genômica
Internet
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (RNA, Untranslated)
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180308
[Lr] Data última revisão:
180308
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171209
[St] Status:MEDLINE
[do] DOI:10.1093/database/bax047


  2 / 5923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29278708
[Au] Autor:Suzuki S; Hoshino H; Yoshida K; Nakanishi J; Tsuchiya-Hirata S; Kobuke S; Haruyama N; Nishimura F; Shiba H
[Ad] Endereço:Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan. Electronic address: suzukis@hiroshima-u.ac.jp.
[Ti] Título:Genome-wide identification of chromatin-enriched RNA reveals that unspliced dentin matrix protein-1 mRNA regulates cell proliferation in squamous cell carcinoma.
[So] Source:Biochem Biophys Res Commun;495(3):2303-2309, 2018 01 15.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Chromatin-enriched noncoding RNAs (ncRNAs) have emerged as key molecules in epigenetic processes by interacting with chromatin-associated proteins. Recently, protein-coding mRNA genes have been reported to be chromatin-tethered, similar with ncRNA. However, very little is known about whether chromatin-enriched mRNA is involved in the chromatin modification process. Here, we comprehensively examined chromatin-enriched RNA in squamous cell carcinoma (SQCC) cells by RNA subcellular localization analysis, which was a combination of RNA fractionation and RNA-seq. We identified 11 mRNAs as highly chromatin-enriched RNAs. Among these, we focused on the dentin matrix protein-1 (DMP-1) gene because its expression in SQCC cells has not been reported. Furthermore, we clarified that DMP-1 mRNA was retained in chromatin in its unspliced form in SQCC in vitro and in vivo. As the inhibition of the unspliced DMP-1 mRNA (unspDMP-1) expression resulted in decreased cellular proliferation in SQCC cells, we performed ChIP-qPCR to identify cell cycle-related genes whose expression was epigenetically modified by unspDMP-1, and found that the CDKN1B promoter became active in SQCC cells by inhibiting unspDMP-1 expression. This result was further validated by the increased CDKN1B gene expression in the cells treated with siRNA for unspDMP-1 and by restoration of the decreased cellular proliferation rate by simultaneously inhibiting CDKN1B expression in SQCC cells. Further, to examine whether unspDMP-1 was able to associate with the CDKN1B promoter region, SQCC cells stably expressing PP7-mCherry fusion protein were transiently transfected with the unspDMP-1 fused to 24 repeats of the PP7 RNA stem loop (unspDMP-1-24xPP7) and we found that unspDMP-1-24xPP7 was efficiently precipitated with the antibody against mCherry and was significantly enriched in the CDKN1B promoter region. Thus, unspDMP-1 is a novel chromatin-enriched RNA that epigenetically regulates cellular proliferation of SQCC.
[Mh] Termos MeSH primário: Carcinoma de Células Escamosas/genética
Carcinoma de Células Escamosas/patologia
Proliferação Celular/genética
Cromatina/genética
Proteínas da Matriz Extracelular/genética
Fosfoproteínas/genética
RNA Neoplásico/genética
RNA não Traduzido/genética
[Mh] Termos MeSH secundário: Carcinoma de Células Escamosas/metabolismo
Linhagem Celular Tumoral
Mapeamento Cromossômico/métodos
Seres Humanos
MicroRNAs/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Chromatin); 0 (DMP1 protein, human); 0 (Extracellular Matrix Proteins); 0 (MicroRNAs); 0 (Phosphoproteins); 0 (RNA, Neoplasm); 0 (RNA, Untranslated)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180214
[Lr] Data última revisão:
180214
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171227
[St] Status:MEDLINE


  3 / 5923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28471386
[Au] Autor:Anwar SL; Wulaningsih W; Lehmann U
[Ad] Endereço:Division of Surgical Oncology, Department of Surgery Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia. sl.anwar@ugm.ac.id.
[Ti] Título:Transposable Elements in Human Cancer: Causes and Consequences of Deregulation.
[So] Source:Int J Mol Sci;18(5), 2017 May 04.
[Is] ISSN:1422-0067
[Cp] País de publicação:Switzerland
[La] Idioma:eng
[Ab] Resumo:Transposable elements (TEs) comprise nearly half of the human genome and play an essential role in the maintenance of genomic stability, chromosomal architecture, and transcriptional regulation. TEs are repetitive sequences consisting of RNA transposons, DNA transposons, and endogenous retroviruses that can invade the human genome with a substantial contribution in human evolution and genomic diversity. TEs are therefore firmly regulated from early embryonic development and during the entire course of human life by epigenetic mechanisms, in particular DNA methylation and histone modifications. The deregulation of TEs has been reported in some developmental diseases, as well as for different types of human cancers. To date, the role of TEs, the mechanisms underlying TE reactivation, and the interplay with DNA methylation in human cancers remain largely unexplained. We reviewed the loss of epigenetic regulation and subsequent genomic instability, chromosomal aberrations, transcriptional deregulation, oncogenic activation, and aberrations of non-coding RNAs as the potential mechanisms underlying TE deregulation in human cancers.
[Mh] Termos MeSH primário: Elementos de DNA Transponíveis
Regulação Neoplásica da Expressão Gênica
Neoplasias/genética
[Mh] Termos MeSH secundário: Instabilidade Genômica
Seres Humanos
Proteínas Oncogênicas/genética
Proteínas Oncogênicas/metabolismo
RNA não Traduzido/genética
Proteínas Supressoras de Tumor/genética
Proteínas Supressoras de Tumor/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (DNA Transposable Elements); 0 (Oncogene Proteins); 0 (RNA, Untranslated); 0 (Tumor Suppressor Proteins)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180212
[Lr] Data última revisão:
180212
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170505
[St] Status:MEDLINE


  4 / 5923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28741488
[Au] Autor:Murtha M; Esteller M
[Ad] Endereço:Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Avinguda Gran Via de L'Hospitalet 199-203, L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain.
[Ti] Título:Extraordinary Cancer Epigenomics: Thinking Outside the Classical Coding and Promoter Box.
[So] Source:Trends Cancer;2(10):572-584, 2016 Oct.
[Is] ISSN:2405-8025
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The advent of functional genomics powered by high-throughput sequencing has given us a new appreciation of the genomic sequences that lie outside the canonical promoter-coding sequence box. These regions harbor distant regulatory elements, enhancers, super-enhancers, insulators, alternative promoters, and sequences that transcribe as noncoding RNAs (ncRNAs) such as miRNAs and long ncRNAs. These functional genomics studies have also enabled a clearer understanding of the role of the 3D structure of the genome in epigenetic regulation. Here we review the impact that epigenetic changes, and specifically DNA methylation, have on these extraordinary sequences in driving cancer progression.
[Mh] Termos MeSH primário: Epigênese Genética
Neoplasias/genética
[Mh] Termos MeSH secundário: Animais
Epigenômica
Genoma
Seres Humanos
Regiões Promotoras Genéticas
RNA não Traduzido
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (RNA, Untranslated)
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180118
[Lr] Data última revisão:
180118
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170726
[St] Status:MEDLINE


  5 / 5923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:29283231
[Au] Autor:Mustafin RN; Khusnutdinova EK
[Ti] Título:The Role of Transposable Elements in Ontogenesis.
[So] Source:Usp Fiziol Nauk;47(3):70-96, 2016 Jul-Sep.
[Is] ISSN:0301-1798
[Cp] País de publicação:Russia (Federation)
[La] Idioma:rus
[Ab] Resumo:The article describes the role of transposable elements in the ontogenesis of eukaryotes. Adaptive and controlled transposition of mobile elements occurs at different stages of development of an organism, causing dramatic changes in the regulation of gene expression, representing a cascade of reactions inherited genome evolutionary fixed at the species level. At this cascade of reactions involved regulatory system of tissue-specific expression of proteins splice variants in connection with the role of adaptive genes mosaic structure to numerous transpositions and the interconnectedness of mechanisms their evolutionary stabilization. Important role in the transposition of mobile elements and their interaction with groups of genes play epigenetic mechanisms - DNA methylation, histone modification, the expression of non-coding RNA. The genome structures responsible for the epigenetic regulation can have a transposons origin. In contrast to the previously established hypotheses on transpositions of mobile elements in the ontogenesis as a chaotic process, causing the destabilization of genotype, with a modern viewpoint, this mechanism has a species-specific patterns, formed evolutionarily. Mechanisms of the evolutionary transformation of genomes by natural selection create a relatively stable complex regulatory epigenetic characteristics of transpositions in the process of individual development, acting among individuals of the same species. The stability of the complex genomic information regulation in ontogenesis provides a specific set of transposons. Changing this regulation set transposons can cause fatal for the development of events. Dysregulation of transposons, not involved in the developmental restructuring, can give the inheritance of these changes. The aging process is a consequence of the evolutionary relationship of species-specific features of the regulation of mobile elements in ontogenesis, aimed at continuity and continuous increase in living matter for maximum adaptability. In the overall scheme of ontogenetic development process can be described as a way to implement the established evolutionary genomic information in time by means of gradually stabilized complex interaction of regulators of transpositions of mobile elements of the genome with a differentiated pattern of gene expression and regulation of splicing variants of their products. These transpositions vary with each cell division, especially by implementing the expression of sets of genes, the products of which affect the nature of the further transposition and change of regulation in the subsequent stages of development of an organism.
[Mh] Termos MeSH primário: Envelhecimento/genética
Elementos de DNA Transponíveis
Regulação da Expressão Gênica no Desenvolvimento
Genoma
Morfogênese/genética
[Mh] Termos MeSH secundário: Processamento Alternativo
Evolução Biológica
Metilação de DNA
Epigênese Genética
Eucariotos/crescimento & desenvolvimento
Eucariotos/metabolismo
Histonas/genética
Histonas/metabolismo
RNA não Traduzido/genética
RNA não Traduzido/metabolismo
Seleção Genética
Transdução de Sinais
Especificidade da Espécie
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (DNA Transposable Elements); 0 (Histones); 0 (RNA, Untranslated)
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180116
[Lr] Data última revisão:
180116
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171229
[St] Status:MEDLINE


  6 / 5923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28456523
[Au] Autor:Chikne V; Gupta SK; Doniger T; K SR; Cohen-Chalamish S; Waldman Ben-Asher H; Kolet L; Yahia NH; Unger R; Ullu E; Kolev NG; Tschudi C; Michaeli S
[Ad] Endereço:The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel.
[Ti] Título:The Canonical Poly (A) Polymerase PAP1 Polyadenylates Non-Coding RNAs and Is Essential for snoRNA Biogenesis in Trypanosoma brucei.
[So] Source:J Mol Biol;429(21):3301-3318, 2017 Oct 27.
[Is] ISSN:1089-8638
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The parasite Trypanosoma brucei is the causative agent of African sleeping sickness and is known for its unique RNA processing mechanisms that are common to all the kinetoplastidea including Leishmania and Trypanosoma cruzi. Trypanosomes possess two canonical RNA poly (A) polymerases (PAPs) termed PAP1 and PAP2. PAP1 is encoded by one of the only two genes harboring cis-spliced introns in this organism, and its function is currently unknown. In trypanosomes, all mRNAs, and non-coding RNAs such as small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs), undergo trans-splicing and polyadenylation. Here, we show that the function of PAP1, which is located in the nucleus, is to polyadenylate non-coding RNAs, which undergo trans-splicing and polyadenylation. Major substrates of PAP1 are the snoRNAs and lncRNAs. Under the silencing of either PAP1 or PAP2, the level of snoRNAs is reduced. The dual polyadenylation of snoRNA intermediates is carried out by both PAP2 and PAP1 and requires the factors essential for the polyadenylation of mRNAs. The dual polyadenylation of the precursor snoRNAs by PAPs may function to recruit the machinery essential for snoRNA processing.
[Mh] Termos MeSH primário: Poli A/genética
Poliadenilação/genética
Polinucleotídeo Adenililtransferase/genética
RNA Mensageiro/genética
RNA Nucleolar Pequeno/biossíntese
RNA não Traduzido/genética
Trypanosoma brucei brucei/enzimologia
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Proteínas Associadas a Pancreatite
Processamento de RNA
Alinhamento de Sequência
Trypanosoma brucei brucei/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Pancreatitis-Associated Proteins); 0 (REG3A protein, human); 0 (RNA, Messenger); 0 (RNA, Small Nucleolar); 0 (RNA, Untranslated); 24937-83-5 (Poly A); EC 2.7.7.19 (Polynucleotide Adenylyltransferase)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:180116
[Lr] Data última revisão:
180116
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170501
[St] Status:MEDLINE


  7 / 5923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29242381
[Au] Autor:Slaby O; Laga R; Sedlacek O
[Ad] Endereço:Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic on.slaby@gmail.com laga@imc.cas.cz.
[Ti] Título:Therapeutic targeting of non-coding RNAs in cancer.
[So] Source:Biochem J;474(24):4219-4251, 2017 Dec 14.
[Is] ISSN:1470-8728
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The majority of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) affect normal expression of the genes, including oncogenes and tumour suppressive genes, which make them a new class of targets for drug development in cancer. Although microRNAs (miRNAs) are the most studied regulatory ncRNAs to date, and miRNA-targeted therapeutics have already reached clinical development, including the mimics of the tumour suppressive miRNAs miR-34 and miR-16, which reached phase I clinical trials for the treatment of liver cancer and mesothelioma, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognised. Here, we describe obstacles and advances in the development of ncRNA therapeutics and provide the comprehensive overview of the ncRNA chemistry and delivery technologies. Furthermore, we summarise recent knowledge on the biological functions of miRNAs and their involvement in carcinogenesis, and discuss the strategies of their therapeutic manipulation in cancer. We review also the emerging insights into the role of lncRNAs and their potential as targets for novel treatment paradigms. Finally, we provide the up-to-date summary of clinical trials involving miRNAs and future directions in the development of ncRNA therapeutics.
[Mh] Termos MeSH primário: Antineoplásicos/uso terapêutico
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
Neoplasias/tratamento farmacológico
Neoplasias/genética
RNA não Traduzido/genética
[Mh] Termos MeSH secundário: Animais
Seres Humanos
MicroRNAs/genética
Modelos Genéticos
Terapia de Alvo Molecular/métodos
Terapia de Alvo Molecular/tendências
RNA Longo não Codificante/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Nm] Nome de substância:
0 (Antineoplastic Agents); 0 (MicroRNAs); 0 (RNA, Long Noncoding); 0 (RNA, Untranslated)
[Em] Mês de entrada:1712
[Cu] Atualização por classe:171227
[Lr] Data última revisão:
171227
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171216
[St] Status:MEDLINE
[do] DOI:10.1042/BCJ20170079


  8 / 5923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29198561
[Au] Autor:Chou HJ; Donnard E; Gustafsson HT; Garber M; Rando OJ
[Ad] Endereço:Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
[Ti] Título:Transcriptome-wide Analysis of Roles for tRNA Modifications in Translational Regulation.
[So] Source:Mol Cell;68(5):978-992.e4, 2017 Dec 07.
[Is] ISSN:1097-4164
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Covalent nucleotide modifications in noncoding RNAs affect a plethora of biological processes, and new functions continue to be discovered even for well-known modifying enzymes. To systematically compare the functions of a large set of noncoding RNA modifications in gene regulation, we carried out ribosome profiling in budding yeast to characterize 57 nonessential genes involved in tRNA modification. Deletion mutants exhibited a range of translational phenotypes, with enzymes known to modify anticodons, or non-tRNA substrates such as rRNA, exhibiting the most dramatic translational perturbations. Our data build on prior reports documenting translational upregulation of the nutrient-responsive transcription factor Gcn4 in response to numerous tRNA perturbations, and identify many additional translationally regulated mRNAs throughout the yeast genome. Our data also uncover unexpected roles for tRNA-modifying enzymes in regulation of TY retroelements, and in rRNA 2'-O-methylation. This dataset should provide a rich resource for discovery of additional links between tRNA modifications and gene regulation.
[Mh] Termos MeSH primário: RNA Fúngico/metabolismo
RNA de Transferência/metabolismo
Ribossomos/enzimologia
Proteínas de Saccharomyces cerevisiae/metabolismo
Saccharomyces cerevisiae/enzimologia
Transcriptoma
tRNA Metiltransferases/metabolismo
[Mh] Termos MeSH secundário: Fatores de Transcrição de Zíper de Leucina Básica/biossíntese
Fatores de Transcrição de Zíper de Leucina Básica/genética
Perfilação da Expressão Gênica/métodos
Regulação Fúngica da Expressão Gênica
Genótipo
Metilação
Mutação
Fenótipo
RNA Fúngico/genética
RNA Mensageiro/genética
RNA Mensageiro/metabolismo
RNA Ribossômico/genética
RNA Ribossômico/metabolismo
RNA de Transferência/genética
RNA não Traduzido/genética
RNA não Traduzido/metabolismo
Retroelementos
Ribossomos/genética
Saccharomyces cerevisiae/genética
Proteínas de Saccharomyces cerevisiae/biossíntese
Proteínas de Saccharomyces cerevisiae/genética
Sequências Repetidas Terminais
tRNA Metiltransferases/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Basic-Leucine Zipper Transcription Factors); 0 (GCN4 protein, S cerevisiae); 0 (RNA, Fungal); 0 (RNA, Messenger); 0 (RNA, Ribosomal); 0 (RNA, Untranslated); 0 (Retroelements); 0 (Saccharomyces cerevisiae Proteins); 9014-25-9 (RNA, Transfer); EC 2.1.1.- (Trm7 protein, S cerevisiae); EC 2.1.1.- (tRNA Methyltransferases)
[Em] Mês de entrada:1712
[Cu] Atualização por classe:171226
[Lr] Data última revisão:
171226
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171205
[St] Status:MEDLINE


  9 / 5923 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28747322
[Au] Autor:Panchapakesan SSS; Ferguson ML; Hayden EJ; Chen X; Hoskins AA; Unrau PJ
[Ad] Endereço:Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
[Ti] Título:Ribonucleoprotein purification and characterization using RNA Mango.
[So] Source:RNA;23(10):1592-1599, 2017 10.
[Is] ISSN:1469-9001
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The characterization of RNA-protein complexes (RNPs) is a difficult but increasingly important problem in modern biology. By combining the compact RNA Mango aptamer with a fluorogenic thiazole orange desthiobiotin (TO1-Dtb or TO3-Dtb) ligand, we have created an RNA tagging system that simplifies the purification and subsequent characterization of endogenous RNPs. Mango-tagged RNP complexes can be immobilized on a streptavidin solid support and recovered in their native state by the addition of free biotin. Furthermore, Mango-based RNP purification can be adapted to different scales of RNP isolation ranging from pull-down assays to the isolation of large amounts of biochemically defined cellular RNPs. We have incorporated the Mango aptamer into the U1 small nuclear RNA (snRNA), shown that the Mango-snRNA is functional in cells, and used the aptamer to pull down a U1 snRNA-associated protein. To demonstrate large-scale isolation of RNPs, we purified and characterized bacterial RNA polymerase holoenzyme (HE) in complex with a Mango-containing 6S RNA. We were able to use the combination of a red-shifted TO3-Dtb ligand and eGFP-tagged HE to follow the binding and release of the 6S RNA by two-color native gel analysis as well as by single-molecule fluorescence cross-correlation spectroscopy. Together these experiments demonstrate how the Mango aptamer in conjunction with simple derivatives of its flurophore ligands enables the purification and characterization of endogenous cellular RNPs in vitro.
[Mh] Termos MeSH primário: Aptâmeros de Nucleotídeos/química
Bioquímica/métodos
Ribonucleoproteínas/isolamento & purificação
Espectrometria de Fluorescência/métodos
[Mh] Termos MeSH secundário: Benzotiazóis/química
Biotina/análogos & derivados
Biotina/química
Proteínas de Fluorescência Verde/genética
Quinolinas/química
RNA Bacteriano/metabolismo
RNA Nuclear Pequeno/química
RNA não Traduzido/metabolismo
Ribonucleoproteínas/metabolismo
Saccharomyces cerevisiae/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (6S RNA); 0 (Aptamers, Nucleotide); 0 (Benzothiazoles); 0 (Quinolines); 0 (RNA, Bacterial); 0 (RNA, Small Nuclear); 0 (RNA, Untranslated); 0 (Ribonucleoproteins); 0 (U1 small nuclear RNA); 107091-89-4 (thiazole orange); 147336-22-9 (Green Fluorescent Proteins); 6SO6U10H04 (Biotin); 71U5JB52KS (desthiobiotin)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171227
[Lr] Data última revisão:
171227
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170728
[St] Status:MEDLINE
[do] DOI:10.1261/rna.062166.117


  10 / 5923 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28468764
[Au] Autor:Parker S; Fraczek MG; Wu J; Shamsah S; Manousaki A; Dungrattanalert K; de Almeida RA; Estrada-Rivadeneyra D; Omara W; Delneri D; O'Keefe RT
[Ad] Endereço:Division of Evolution & Genomic Sciences.
[Ti] Título:A resource for functional profiling of noncoding RNA in the yeast .
[So] Source:RNA;23(8):1166-1171, 2017 08.
[Is] ISSN:1469-9001
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Eukaryotic genomes are extensively transcribed, generating many different RNAs with no known function. We have constructed 1502 molecular barcoded ncRNA gene deletion strains encompassing 443 ncRNAs in the yeast as tools for ncRNA functional analysis. This resource includes deletions of small nuclear RNAs (snRNAs), transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), and other annotated ncRNAs as well as the more recently identified stable unannotated transcripts (SUTs) and cryptic unstable transcripts (CUTs) whose functions are largely unknown. Specifically, deletions have been constructed for ncRNAs found in the intergenic regions, not overlapping genes or their promoters (i.e., at least 200 bp minimum distance from the closest gene start codon). The deletion strains carry molecular barcodes designed to be complementary with the protein gene deletion collection enabling parallel analysis experiments. These strains will be useful for the numerous genomic and molecular techniques that utilize deletion strains, including genome-wide phenotypic screens under different growth conditions, pooled chemogenomic screens with drugs or chemicals, synthetic genetic array analysis to uncover novel genetic interactions, and synthetic dosage lethality screens to analyze gene dosage. Overall, we created a valuable resource for the RNA community and for future ncRNA research.
[Mh] Termos MeSH primário: Genoma Fúngico
RNA Fúngico/metabolismo
RNA não Traduzido/metabolismo
Saccharomyces cerevisiae/genética
[Mh] Termos MeSH secundário: RNA Fúngico/genética
RNA não Traduzido/genética
Saccharomyces cerevisiae/crescimento & desenvolvimento
Saccharomyces cerevisiae/metabolismo
Deleção de Sequência
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (RNA, Fungal); 0 (RNA, Untranslated)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:171223
[Lr] Data última revisão:
171223
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170505
[St] Status:MEDLINE
[do] DOI:10.1261/rna.061564.117



página 1 de 593 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde