Base de dados : MEDLINE
Pesquisa : E01.158 [Categoria DeCS]
Referências encontradas : 20820 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 2082 ir para página                         

  1 / 20820 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29352285
[Au] Autor:Han SS; Park GH; Lim W; Kim MS; Na JI; Park I; Chang SE
[Ad] Endereço:I Dermatology, Seoul, Korea.
[Ti] Título:Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network.
[So] Source:PLoS One;13(1):e0191493, 2018.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Although there have been reports of the successful diagnosis of skin disorders using deep learning, unrealistically large clinical image datasets are required for artificial intelligence (AI) training. We created datasets of standardized nail images using a region-based convolutional neural network (R-CNN) trained to distinguish the nail from the background. We used R-CNN to generate training datasets of 49,567 images, which we then used to fine-tune the ResNet-152 and VGG-19 models. The validation datasets comprised 100 and 194 images from Inje University (B1 and B2 datasets, respectively), 125 images from Hallym University (C dataset), and 939 images from Seoul National University (D dataset). The AI (ensemble model; ResNet-152 + VGG-19 + feedforward neural networks) results showed test sensitivity/specificity/ area under the curve values of (96.0 / 94.7 / 0.98), (82.7 / 96.7 / 0.95), (92.3 / 79.3 / 0.93), (87.7 / 69.3 / 0.82) for the B1, B2, C, and D datasets. With a combination of the B1 and C datasets, the AI Youden index was significantly (p = 0.01) higher than that of 42 dermatologists doing the same assessment manually. For B1+C and B2+ D dataset combinations, almost none of the dermatologists performed as well as the AI. By training with a dataset comprising 49,567 images, we achieved a diagnostic accuracy for onychomycosis using deep learning that was superior to that of most of the dermatologists who participated in this study.
[Mh] Termos MeSH primário: Diagnóstico por Computador
Redes Neurais (Computação)
Onicomicose/diagnóstico
[Mh] Termos MeSH secundário: Adulto
Idoso
Algoritmos
Área Sob a Curva
Inteligência Artificial
Bases de Dados Factuais
Dermatologistas
Feminino
Dermatoses do Pé/diagnóstico
Dermatoses do Pé/patologia
Dermatoses da Mão/diagnóstico
Dermatoses da Mão/patologia
Seres Humanos
Interpretação de Imagem Assistida por Computador
Aprendizado de Máquina
Masculino
Meia-Idade
Onicomicose/patologia
Adulto Jovem
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180226
[Lr] Data última revisão:
180226
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180121
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0191493


  2 / 20820 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29172671
[Au] Autor:Silva M; Milanese G; Seletti V; Ariani A; Sverzellati N
[Ad] Endereço:1 Department of Medicine and Surgery (DiMeC), Section of Radiology, Unit of Surgical Sciences, University of Parma , Parma , Italy.
[Ti] Título:Pulmonary quantitative CT imaging in focal and diffuse disease: current research and clinical applications.
[So] Source:Br J Radiol;91(1083):20170644, 2018 Feb.
[Is] ISSN:1748-880X
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The frenetic development of imaging technology-both hardware and software-provides exceptional potential for investigation of the lung. In the last two decades, CT was exploited for detailed characterization of pulmonary structures and description of respiratory disease. The introduction of volumetric acquisition allowed increasingly sophisticated analysis of CT data by means of computerized algorithm, namely quantitative CT (QCT). Hundreds of thousands of CTs have been analysed for characterization of focal and diffuse disease of the lung. Several QCT metrics were developed and tested against clinical, functional and prognostic descriptors. Computer-aided detection of nodules, textural analysis of focal lesions, densitometric analysis and airway segmentation in obstructive pulmonary disease and textural analysis in interstitial lung disease are the major chapters of this discipline. The validation of QCT metrics for specific clinical and investigational needs prompted the translation of such metrics from research field to patient care. The present review summarizes the state of the art of QCT in both focal and diffuse lung disease, including a dedicated discussion about application of QCT metrics as parameters for clinical care and outcomes in clinical trials.
[Mh] Termos MeSH primário: Pneumopatias/tratamento farmacológico
Pneumopatias/patologia
Tomografia Computadorizada por Raios X/métodos
[Mh] Termos MeSH secundário: Algoritmos
Diagnóstico por Computador/métodos
Seres Humanos
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180226
[Lr] Data última revisão:
180226
[Sb] Subgrupo de revista:AIM; IM
[Da] Data de entrada para processamento:171128
[St] Status:MEDLINE
[do] DOI:10.1259/bjr.20170644


  3 / 20820 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28471111
[Au] Autor:Hao SR; Geng SC; Fan LX; Chen JJ; Zhang Q; Li LJ
[Ad] Endereço:State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
[Ti] Título:Intelligent diagnosis of jaundice with dynamic uncertain causality graph model.
[So] Source:J Zhejiang Univ Sci B;18(5):393-401, 2017 May.
[Is] ISSN:1862-1783
[Cp] País de publicação:China
[La] Idioma:eng
[Ab] Resumo:Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A "chaining" inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure.
[Mh] Termos MeSH primário: Algoritmos
Gráficos por Computador
Diagnóstico por Computador/métodos
Icterícia/diagnóstico
Aprendizado de Máquina
Modelos Estatísticos
[Mh] Termos MeSH secundário: Teorema de Bayes
Causalidade
Simulação por Computador
Sistemas de Apoio a Decisões Clínicas
Seres Humanos
Icterícia/epidemiologia
Prevalência
Reprodutibilidade dos Testes
Sensibilidade e Especificidade
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180226
[Lr] Data última revisão:
180226
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170505
[St] Status:MEDLINE
[do] DOI:10.1631/jzus.B1600273


  4 / 20820 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29257132
[Au] Autor:Lee RS; Gimenez F; Hoogi A; Miyake KK; Gorovoy M; Rubin DL
[Ad] Endereço:Biomedical Informatics Training Program, Stanford University, Stanford, CA 94305, USA.
[Ti] Título:A curated mammography data set for use in computer-aided detection and diagnosis research.
[So] Source:Sci Data;4:170177, 2017 12 19.
[Is] ISSN:2052-4463
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Published research results are difficult to replicate due to the lack of a standard evaluation data set in the area of decision support systems in mammography; most computer-aided diagnosis (CADx) and detection (CADe) algorithms for breast cancer in mammography are evaluated on private data sets or on unspecified subsets of public databases. This causes an inability to directly compare the performance of methods or to replicate prior results. We seek to resolve this substantial challenge by releasing an updated and standardized version of the Digital Database for Screening Mammography (DDSM) for evaluation of future CADx and CADe systems (sometimes referred to generally as CAD) research in mammography. Our data set, the CBIS-DDSM (Curated Breast Imaging Subset of DDSM), includes decompressed images, data selection and curation by trained mammographers, updated mass segmentation and bounding boxes, and pathologic diagnosis for training data, formatted similarly to modern computer vision data sets. The data set contains 753 calcification cases and 891 mass cases, providing a data-set size capable of analyzing decision support systems in mammography.
[Mh] Termos MeSH primário: Neoplasias da Mama
Diagnóstico por Computador
Mamografia
[Mh] Termos MeSH secundário: Algoritmos
Neoplasias da Mama/diagnóstico
Neoplasias da Mama/prevenção & controle
Bases de Dados Factuais
Feminino
Seres Humanos
[Pt] Tipo de publicação:DATASET; JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180223
[Lr] Data última revisão:
180223
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171220
[St] Status:MEDLINE
[do] DOI:10.1038/sdata.2017.177


  5 / 20820 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27775526
[Au] Autor:Cho D; Min B; Kim J; Lee B
[Ti] Título:EEG-Based Prediction of Epileptic Seizures Using Phase Synchronization Elicited from Noise-Assisted Multivariate Empirical Mode Decomposition.
[So] Source:IEEE Trans Neural Syst Rehabil Eng;25(8):1309-1318, 2017 08.
[Is] ISSN:1558-0210
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:In this study, we examined the phase locking value (PLV) for seizure prediction, particularly, in the gamma frequency band. We prepared simulation data and 65 clinical cases of seizure. In addition, various filtering algorithms including bandpass filtering, empirical mode decomposition, multivariate empirical mode decomposition and noise-assisted multivariate empirical mode decomposition (NA-MEMD) were used to decompose spectral components from the data. Moreover, in the case of clinical data, the PLVs were used to classify between interictal and preictal stages using a support vector machine. The highest PLV was achieved with NA-MEMD with 0-dB white noise algorithm (0.9988), which exhibited statistically significant differences compared to other filtering algorithms. Moreover, the classification rate was the highest for the NA-MEMD with 0-dB algorithm (83.17%). In terms of frequency components, examining the gamma band resulted in the highest classification rates for all algorithms, compared to other frequency bands such as theta, alpha, and beta bands. We found that PLVs calculated with the NA-MEMD algorithm could be used as a potential biological marker for seizure prediction. Moreover, the gamma frequency band was useful for discriminating between interictal and preictal stages.
[Mh] Termos MeSH primário: Mapeamento Encefálico/métodos
Diagnóstico por Computador/métodos
Sincronização de Fases em Eletroencefalografia
Eletroencefalografia/métodos
Análise Multivariada
Convulsões/diagnóstico
[Mh] Termos MeSH secundário: Adolescente
Algoritmos
Criança
Pré-Escolar
Simulação por Computador
Análise Discriminante
Feminino
Seres Humanos
Masculino
Modelos Neurológicos
Modelos Estatísticos
Reconhecimento Automatizado de Padrão/métodos
Reprodutibilidade dos Testes
Convulsões/fisiopatologia
Sensibilidade e Especificidade
Razão Sinal-Ruído
[Pt] Tipo de publicação:EVALUATION STUDIES; JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Em] Mês de entrada:1710
[Cu] Atualização por classe:180201
[Lr] Data última revisão:
180201
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161025
[St] Status:MEDLINE
[do] DOI:10.1109/TNSRE.2016.2618937


  6 / 20820 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27775525
[Au] Autor:Qian D; Wang B; Qing X; Zhang T; Zhang Y; Wang X; Nakamura M
[Ti] Título:Bayesian Nonnegative CP Decomposition-Based Feature Extraction Algorithm for Drowsiness Detection.
[So] Source:IEEE Trans Neural Syst Rehabil Eng;25(8):1297-1308, 2017 08.
[Is] ISSN:1558-0210
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Daytime short nap involves physiological processes, such as alertness, drowsiness and sleep. The study of the relationship between drowsiness and nap based on physiological signals is a great way to have a better understanding of the periodical rhymes of physiological states. A model of Bayesian nonnegative CP decomposition (BNCPD) was proposed to extract common multiway features from the group-level electroencephalogram (EEG) signals. As an extension of the nonnegative CP decomposition, the BNCPD model involves prior distributions of factor matrices, while the underlying CP rank could be determined automatically based on a Bayesian nonparametric approach. In terms of computational speed, variational inference was applied to approximate the posterior distributions of unknowns. Extensive simulations on the synthetic data illustrated the capability of our model to recover the true CP rank. As a real-world application, the performance of drowsiness detection during daytime short nap by using the BNCPD-based features was compared with that of other traditional feature extraction methods. Experimental results indicated that the BNCPD model outperformed other methods for feature extraction in terms of two evaluation metrics, as well as different parameter settings. Our approach is likely to be a useful tool for automatic CP rank determination and offering a plausible multiway physiological information of individual states.
[Mh] Termos MeSH primário: Algoritmos
Diagnóstico por Computador/métodos
Eletroencefalografia/métodos
Aprendizado de Máquina
Reconhecimento Automatizado de Padrão/métodos
Polissonografia/métodos
Fases do Sono/fisiologia
[Mh] Termos MeSH secundário: Adulto
Teorema de Bayes
Simulação por Computador
Interpretação Estatística de Dados
Feminino
Seres Humanos
Masculino
Modelos Estatísticos
Reprodutibilidade dos Testes
Sensibilidade e Especificidade
Adulto Jovem
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Em] Mês de entrada:1710
[Cu] Atualização por classe:180201
[Lr] Data última revisão:
180201
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161025
[St] Status:MEDLINE
[do] DOI:10.1109/TNSRE.2016.2618902


  7 / 20820 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:29205225
[Au] Autor:Czaplicki A; Kuniszyk-Józkowiak W; Jaszczuk J; Jarocka M; Walawski J
[Ad] Endereço:Józef Pilsudski University of Physical Education, Faculty of Physical Education and Sport, Department of Biomechanics and Computer Science, Biala Podlaska, Poland.
[Ti] Título:Using the discrete wavelet transform in assessing the effectiveness of rehabilitation in patients after ACL reconstruction.
[So] Source:Acta Bioeng Biomech;19(3):139-146, 2017.
[Is] ISSN:1509-409X
[Cp] País de publicação:Poland
[La] Idioma:eng
[Ab] Resumo:PURPOSE: The purpose of the current study was to assess the effectiveness of rehabilitation in patients after anterior cruciate ligament reconstruction (ACLR) using a wavelet analysis of the torque-time curve patterns of the extensors of the affected knee. The analysis aimed at the quantitative evaluation of irregularities in these torque-time patterns. METHODS: The study involved a group of 22 men who had had ACL reconstruction. The torque-time characteristics were recorded 3, 6 and 12 months after the surgery by an isokinetic dynamometer. They were then examined using the orthogonal Daubechies 4 (Db 4) and biorthogonal Bior 3.1 wavelets. RESULTS: A statistical analysis of the results revealed significant differences in values of the high-frequency energy stored in the details of the signal from the dynamometer between the first and last measurements, both for the Db 4 ( p ≤ 0.023) and Bior 3.1 ( p ≤ 0.01) wavelets. These differences were found in 73% of patients whose curve patterns were analysed using the Db 4 wavelet and in 82% of patients in the case of the Bior 3.1 wavelet. CONCLUSIONS: The wavelet transform proved to be an effective research tool in the qualitative evaluation of irregularities occurring in the curve patterns of the torque generated by the extensors of the ACL reconstructed knee. The findings of the study suggest that time-frequency analyses of these characteristics can be of practical importance, as they help assess the state of the patient's knee joint and his progress in rehabilitation after ACLR.
[Mh] Termos MeSH primário: Lesões do Ligamento Cruzado Anterior/diagnóstico
Lesões do Ligamento Cruzado Anterior/terapia
Reconstrução do Ligamento Cruzado Anterior/reabilitação
Diagnóstico por Computador/métodos
Teste de Esforço/métodos
Análise de Ondaletas
[Mh] Termos MeSH secundário: Adulto
Algoritmos
Lesões do Ligamento Cruzado Anterior/fisiopatologia
Seres Humanos
Articulação do Joelho/fisiopatologia
Masculino
Contração Muscular
Força Muscular
Músculo Esquelético/fisiopatologia
Avaliação de Resultados (Cuidados de Saúde)/métodos
Reprodutibilidade dos Testes
Sensibilidade e Especificidade
Processamento de Sinais Assistido por Computador
Terapia Assistida por Computador/métodos
Resultado do Tratamento
[Pt] Tipo de publicação:CLINICAL TRIAL; JOURNAL ARTICLE
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180129
[Lr] Data última revisão:
180129
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171206
[St] Status:MEDLINE


  8 / 20820 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:29319944
[Au] Autor:Food and Drug Administration, HHS.
[Ti] Título:Medical Devices; Hematology and Pathology Devices; Classification of the Whole Slide Imaging System. Final order.
[So] Source:Fed Regist;83(1):20-2, 2018 Jan 02.
[Is] ISSN:0097-6326
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The Food and Drug Administration (FDA or we) is classifying the whole slide imaging system into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the whole slide imaging system's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.
[Mh] Termos MeSH primário: Diagnóstico por Computador/classificação
Diagnóstico por Computador/instrumentação
Segurança de Equipamentos/classificação
Hematologia/classificação
Hematologia/instrumentação
Microscopia/classificação
Microscopia/instrumentação
Patologia/classificação
Patologia/instrumentação
[Mh] Termos MeSH secundário: Seres Humanos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180122
[Lr] Data última revisão:
180122
[Sb] Subgrupo de revista:T
[Da] Data de entrada para processamento:180111
[St] Status:MEDLINE


  9 / 20820 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28464797
[Au] Autor:Tesfaye A; Fiseha D; Assefa D; Klinkenberg E; Balanco S; Langley I
[Ad] Endereço:Addis Ababa City Government Health Bureau, Addis Ababa, Ethiopia. atabrish@gmail.com.
[Ti] Título:Modeling the patient and health system impacts of alternative xpert® MTB/RIF algorithms for the diagnosis of pulmonary tuberculosis in Addis Ababa, Ethiopia.
[So] Source:BMC Infect Dis;17(1):318, 2017 05 02.
[Is] ISSN:1471-2334
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:BACKGROUND: To reduce global tuberculosis (TB) burden, the active disease must be diagnosed quickly and accurately and patients should be treated and cured. In Ethiopia, TB diagnosis mainly relies on spot-morning-spot (SMS) sputum sample smear analysis using Ziehl-Neelsen staining techniques (ZN). Since 2014 targeted use of xpert has been implemented. New diagnostic techniques have higher sensitivity and are likely to detect more cases if routinely implemented. The objective of our study was to project the effects of alternative diagnostic algorithms on the patient, health system, and costs, and identify cost-effective algorithms that increase TB case detection in Addis Ababa, Ethiopia. METHODS: An observational quantitative modeling framework was applied using the Virtual Implementation approach. The model was designed to represent the operational and epidemiological context of Addis Ababa, the capital city of Ethiopia. We compared eight diagnostic algorithm with ZN microscopy, light emitting diode (LED) fluorescence microscopy and Xpert MTB/RIF. Interventions with an annualized cost per averted disability adjusted life year (DALY) of less than the Gross Domestic Product (GDP) per capita are considered cost-effective interventions. RESULTS: With a cost lower than the average per-capita GDP (US$690 for Ethiopia) for each averted disability adjusted life year (DALY), three of the modeled algorithms are cost-effective. Implementing them would have important patient, health system, and population-level effects in the context of Addis Ababa ❖ The full roll-out of Xpert MTB/RIF as the primary test for all presumptive TB cases would avert 91170 DALYs (95% credible interval [CrI] 54888 - 127448) with an additional health system cost of US$ 11.6 million over the next 10 years. The incremental cost-effectiveness ratio (ICER) is $370 per DALY averted. ❖ Same day LED fluorescence microscopy for all presumptive TB cases combined with Xpert MTB/RIF targeted to HIV-positive and High multidrug resistant (MDR) risk groups would avert 73600 DALYs( 95% CrI 48373 - 99214) with an additional cost of US$5.1 million over the next 10 years. The ICER is $169per DALY averted. ❖ Same-day LED fluorescence microscopy for all presumptive TB cases (and no Xpert MTB/RIF) would avert 43580 DALYs with a reduction cost of US$ 0.2 million over the next 10years. The ICER is $13 per DALY averted. CONCLUSIONS: The full roll-out of Xpert MTB/RIF is predicted to be the best option to substantially reduce the TB burden in Addis Ababa and is considered cost effective. However, the investment cost to implement this is far beyond the budget of the national TB control program. Targeted use of Xpert MTB/RIF for HIV positive and high MDR risk groups with same-day LED fluorescence microscopy for all other presumptive TB cases is an affordable alternative.
[Mh] Termos MeSH primário: Algoritmos
Diagnóstico por Computador/métodos
Tuberculose Pulmonar/diagnóstico
[Mh] Termos MeSH secundário: Análise Custo-Benefício
Assistência à Saúde/economia
Diagnóstico por Computador/economia
Etiópia
Feminino
Infecções por HIV/microbiologia
Seres Humanos
Laboratórios/economia
Masculino
Microscopia de Fluorescência/economia
Microscopia de Fluorescência/métodos
Mycobacterium tuberculosis/efeitos dos fármacos
Anos de Vida Ajustados por Qualidade de Vida
Sensibilidade e Especificidade
Escarro/microbiologia
Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
[Em] Mês de entrada:1708
[Cu] Atualização por classe:180120
[Lr] Data última revisão:
180120
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170504
[St] Status:MEDLINE
[do] DOI:10.1186/s12879-017-2417-6


  10 / 20820 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27771201
[Au] Autor:Atkins AS; Tseng T; Vaughan A; Twamley EW; Harvey P; Patterson T; Narasimhan M; Keefe RS
[Ad] Endereço:NeuroCog Trials, Durham, NC, USA.
[Ti] Título:Validation of the tablet-administered Brief Assessment of Cognition (BAC App).
[So] Source:Schizophr Res;181:100-106, 2017 03.
[Is] ISSN:1573-2509
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:Computerized tests benefit from automated scoring procedures and standardized administration instructions. These methods can reduce the potential for rater error. However, especially in patients with severe mental illnesses, the equivalency of traditional and tablet-based tests cannot be assumed. The Brief Assessment of Cognition in Schizophrenia (BACS) is a pen-and-paper cognitive assessment tool that has been used in hundreds of research studies and clinical trials, and has normative data available for generating age- and gender-corrected standardized scores. A tablet-based version of the BACS called the BAC App has been developed. This study compared performance on the BACS and the BAC App in patients with schizophrenia and healthy controls. Test equivalency was assessed, and the applicability of paper-based normative data was evaluated. Results demonstrated the distributions of standardized composite scores for the tablet-based BAC App and the pen-and-paper BACS were indistinguishable, and the between-methods mean differences were not statistically significant. The discrimination between patients and controls was similarly robust. The between-methods correlations for individual measures in patients were r>0.70 for most subtests. When data from the Token Motor Test was omitted, the between-methods correlation of composite scores was r=0.88 (df=48; p<0.001) in healthy controls and r=0.89 (df=46; p<0.001) in patients, consistent with the test-retest reliability of each measure. Taken together, results indicate that the tablet-based BAC App generates results consistent with the traditional pen-and-paper BACS, and support the notion that the BAC App is appropriate for use in clinical trials and clinical practice.
[Mh] Termos MeSH primário: Cognição
Computadores de Mão
Diagnóstico por Computador
Aplicativos Móveis
Testes Neuropsicológicos
Esquizofrenia/diagnóstico
[Mh] Termos MeSH secundário: Adolescente
Adulto
Idoso
Feminino
Seres Humanos
Masculino
Meia-Idade
Reprodutibilidade dos Testes
Psicologia do Esquizofrênico
Sensibilidade e Especificidade
Adulto Jovem
[Pt] Tipo de publicação:JOURNAL ARTICLE; VALIDATION STUDIES; RESEARCH SUPPORT, NON-U.S. GOV'T
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180112
[Lr] Data última revisão:
180112
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161108
[St] Status:MEDLINE



página 1 de 2082 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde