Base de dados : MEDLINE
Pesquisa : E05.481.500.311.500 [Categoria DeCS]
Referências encontradas : 27437 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 2744 ir para página                         

  1 / 27437 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28470444
[Au] Autor:Lim PN; Feng J; Wang Z; Chong M; Konishi T; Tan LG; Chan J; Thian ES
[Ad] Endereço:Department of Mechanical Engineering, National University of Singapore, Singapore, 117 576, Singapore.
[Ti] Título:In-vivo evaluation of subcutaneously implanted cell-loaded apatite microcarriers for osteogenic potency.
[So] Source:J Mater Sci Mater Med;28(6):86, 2017 Jun.
[Is] ISSN:1573-4838
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Cell-loaded apatite microcarriers present as potential scaffolds for direct in-vivo delivery of cells post-expansion to promote bone regeneration. The objective of this study was to evaluate the osteogenic potency of human foetal mesenchymal stem cells (hfMSC)-loaded apatite microcarriers when implanted subcutaneously in a mouse model. This was done by examining for ectopic bone formation at 2 weeks, 1 month and 2 months, which were intended to coincide with the inflammation, healing and remodelling phases, respectively. Three histological examinations including haematoxylin and eosin staining to examine general tissue morphology, Masson's trichrome staining to identify tissue type, and Von Kossa staining to examine extent of tissue mineralisation were performed. In addition, immunohistochemistry assay of osteopontin was conducted to confirm active bone formation by the seeded hfMSCs. Results showed a high level of tissue organisation and new bone formation, with active bone remodelling being observed at the end of 2 months, and an increase in tissue density, organisation, and mineralisation could also be observed for hfMSC-loaded apatite microcarriers. Various cell morphology resembling that of osteoblasts and osteoclasts could be seen on the surfaces of the hfMSC-loaded apatite microcarriers, with presence of woven bone tissue formation being observed at the intergranular space. These observations were consistent with evidence of ectopic bone formation, which were absent in group containing apatite microcarriers only. Overall, results suggested that hfMSC-loaded apatite microcarriers retained their osteogenic potency after implantation, and provided an effective platform for bone tissue regeneration.
[Mh] Termos MeSH primário: Apatitas/química
Transplante de Células-Tronco Mesenquimais/métodos
Células Mesenquimais Estromais/fisiologia
Osteogênese/fisiologia
[Mh] Termos MeSH secundário: Animais
Diferenciação Celular
Seres Humanos
Teste de Materiais
Camundongos
Engenharia Tecidual/métodos
Tecidos Suporte
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Apatites)
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180309
[Lr] Data última revisão:
180309
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170505
[St] Status:MEDLINE
[do] DOI:10.1007/s10856-017-5897-4


  2 / 27437 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28463576
[Au] Autor:Li K; Zhang C; Qiu L; Gao L; Zhang X
[Ad] Endereço:Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China .
[Ti] Título:Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering.
[So] Source:Tissue Eng Part B Rev;23(4):399-411, 2017 Aug.
[Is] ISSN:1937-3376
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers often ignore the importance of biochemical factors to the growth and development of engineered cartilage. In our point of view, only by fully considering synergistic effects of mechanical and biochemical factors can we find appropriate culture conditions for functional cartilage constructs. Once again, rolling-sliding-compression load under appropriate biochemical conditions may be conductive to realize the adaptive development between the structure and function of engineered cartilage in vitro.
[Mh] Termos MeSH primário: Reatores Biológicos
[Mh] Termos MeSH secundário: Cartilagem
Cartilagem Articular
Condrócitos
Estresse Mecânico
Engenharia Tecidual
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180307
[Lr] Data última revisão:
180307
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170503
[St] Status:MEDLINE
[do] DOI:10.1089/ten.TEB.2016.0427


  3 / 27437 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28452328
[Au] Autor:Golafshan N; Gharibi H; Kharaziha M; Fathi M
[Ad] Endereço:Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
[Ti] Título:A facile one-step strategy for development of a double network fibrous scaffold for nerve tissue engineering.
[So] Source:Biofabrication;9(2):025008, 2017 04 28.
[Is] ISSN:1758-5090
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The aim of this study was to develop a novel double network scaffold composed of polycaprolactone fumarate (PCLF) and eggshell membrane (ESM) (ESM:PCLF) by using the vacuum infiltration method. Compared to ESM, the mechanical properties of double network scaffold were significantly improved, depending on the solvents applied for double network scaffold formation; acetic acid and dichloromethane. Noticeably, the toughness and strength of double network scaffold prepared using acetic acid were significantly improved compared to ESM (26.6 and 25 times, respectively) attributed to the existence of hydrophilic functional groups in acetic acid which made ESM flexible to absorb further PCLF solution. To assess the effect of double network formation on the biological behavior of ESM, the attachment, proliferation and spreading of PC12 cells cultured on the ESM:PCLF scaffolds were evaluated. Results revealed that the number of cells attached on double network ESM:PCLF scaffold were nearly similar to ESM and significantly higher than that of on the tissue culture plate (2.6 times) and PCLF film (1.7 times). It is envisioned that the offered ESM:PCLF double network scaffold might have great potential to develop the constructs for nerve regeneration.
[Mh] Termos MeSH primário: Tecido Nervoso/fisiologia
Engenharia Tecidual
Tecidos Suporte/química
[Mh] Termos MeSH secundário: Animais
Materiais Biocompatíveis/síntese química
Materiais Biocompatíveis/química
Materiais Biocompatíveis/farmacologia
Membrana Celular/química
Movimento Celular/efeitos dos fármacos
Proliferação Celular/efeitos dos fármacos
Sobrevivência Celular/efeitos dos fármacos
Casca de Ovo
Interações Hidrofóbicas e Hidrofílicas
Microscopia Eletrônica de Varredura
Regeneração Nervosa/efeitos dos fármacos
Células PC12
Poliésteres/química
Ratos
Espectroscopia de Infravermelho com Transformada de Fourier
Raios Ultravioleta
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Biocompatible Materials); 0 (Polyesters); 0 (poly(caprolactone fumarate))
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180308
[Lr] Data última revisão:
180308
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170429
[St] Status:MEDLINE
[do] DOI:10.1088/1758-5090/aa68ed


  4 / 27437 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:27775923
[Au] Autor:Ortuño-Lizarán I; Vilariño-Feltrer G; Martínez-Ramos C; Pradas MM; Vallés-Lluch A
[Ad] Endereço:Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Cno. de Vera s/n, E-46022, Valencia, Spain. Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
[Ti] Título:Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits.
[So] Source:Biofabrication;8(4):045011, 2016 10 24.
[Is] ISSN:1758-5090
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Hydrogels have widely been proposed lately as strategies for neural tissue regeneration, but there are still some issues to be solved before their efficient use in tissue engineering of trauma, stroke or the idiopathic degeneration of the nervous system. In a previous work of the authors a novel Schwann-cell structure with the shape of a hollow cylinder was obtained using a three-dimensional conduit based in crosslinked hyaluronic acid as template. This original engineered tissue of tightly joined Schwann cells obtained in a conduit lumen having 400 µm in diameter is a consequence of specific cell-material interactions. In the present work we analyze the influence of the hydrogel concentration and of the drying process on the physicochemical and biological performance of the resulting tubular scaffolds, and prove that the cylinder-like cell sheath obtains also in scaffolds of a larger inner diameter. The diffusion of glucose and of the protein BSA through the scaffolds is studied and characterized, as well as the enzymatic degradation kinetics of the lyophilized conduits. This can be modulated from a couple of weeks to several months by varying the concentration of hyaluronic acid in the starting solution. These findings allow to improve the performance of hyaluronan intended for neural conduits, and open the way to scaffolds with tunable degradation rate adapted to the site and severity of the injury.
[Mh] Termos MeSH primário: Ácido Hialurônico/química
Hidrogéis/química
Tecidos Suporte/química
[Mh] Termos MeSH secundário: Animais
Bovinos
Linhagem Celular
Proliferação Celular
Sobrevivência Celular
Difusão
Glucose/metabolismo
Hidrogéis/síntese química
Regeneração Nervosa
Porosidade
Ratos
Células de Schwann/citologia
Células de Schwann/metabolismo
Células de Schwann/patologia
Soroalbumina Bovina/metabolismo
Engenharia Tecidual
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Hydrogels); 27432CM55Q (Serum Albumin, Bovine); 9004-61-9 (Hyaluronic Acid); IY9XDZ35W2 (Glucose)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:180308
[Lr] Data última revisão:
180308
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161025
[St] Status:MEDLINE


  5 / 27437 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28455218
[Au] Autor:Li Y; Asfour H; Bursac N
[Ad] Endereço:Department of Biomedical Engineering, Duke University, United States.
[Ti] Título:Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue.
[So] Source:Acta Biomater;55:120-130, 2017 Jun.
[Is] ISSN:1878-7568
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Complex heterocellular interactions between cardiomyocytes and fibroblasts in the heart involve their bidirectional signaling via cell-cell contacts, paracrine factors, and extracellular matrix (ECM). These interactions vary with heart development and pathology leading to changes in cardiac structure and function. Whether cardiac fibroblasts of different ages interact differentially with cardiomyocytes to distinctly impact their function remains unknown. Here, we explored the direct structural and functional effects of fetal and adult cardiac fibroblasts on cardiomyocytes using a tissue-engineered 3D co-culture system. We show that the age of cardiac fibroblasts is a strong determinant of the structure, function, and molecular properties of co-cultured tissues. In particular, in vitro expanded adult, but not fetal, cardiac fibroblasts significantly deteriorated electrical and mechanical function of the co-cultured cardiomyocytes, as evidenced by slower action potential conduction, prolonged action potential duration, weaker contractions, higher tissue stiffness, and reduced calcium transient amplitude. This functional deficit was associated with structural and molecular signatures of pathological remodeling including fibroblast proliferation, interstitial collagen deposition, and upregulation of pro-fibrotic markers. Our studies imply critical roles of the age of supporting cells in engineering functional cardiac tissues and provide a new physiologically relevant in vitro platform to investigate influence of heterocellular interactions on cardiomyocyte function, development, and disease. STATEMENT OF SIGNIFICANCE: Previous studies have shown that cardiomyocytes and fibroblasts in the heart interact through direct contacts, paracrine factors, and matrix-mediated crosstalk. However, whether cardiac fibroblasts of different ages distinctly impact cardiomyocyte function remains elusive. We employed a tissue-engineered hydrogel-based co-culture system to study interactions of cardiomyocytes with fetal or adult cardiac fibroblasts. We show that the age of cardiac fibroblasts is a strong determinant of the structure, function, and molecular properties of engineered cardiac tissues and that key features of fibrotic myocardium are replicated by supplementing cardiomyocytes with expanded adult but not fetal fibroblasts. These findings relate to implantation of stem cell-derived cardiomyocytes in adult myocardium and warrant further studies of how age and source of non-myocytes impact cardiac function and maturation.
[Mh] Termos MeSH primário: Envelhecimento/metabolismo
Fibroblastos/metabolismo
Miocárdio/metabolismo
Miócitos Cardíacos/metabolismo
Engenharia Tecidual/métodos
[Mh] Termos MeSH secundário: Animais
Células Cultivadas
Fibroblastos/citologia
Miocárdio/citologia
Miócitos Cardíacos/citologia
Ratos
Ratos Sprague-Dawley
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180301
[Lr] Data última revisão:
180301
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170430
[St] Status:MEDLINE


  6 / 27437 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29343687
[Au] Autor:Frith JE; Kusuma GD; Carthew J; Li F; Cloonan N; Gomez GA; Cooper-White JJ
[Ad] Endereço:Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia. Jessica.Frith@monash.edu.
[Ti] Título:Mechanically-sensitive miRNAs bias human mesenchymal stem cell fate via mTOR signalling.
[So] Source:Nat Commun;9(1):257, 2018 01 17.
[Is] ISSN:2041-1723
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Mechanotransduction is a strong driver of mesenchymal stem cell (MSC) fate. In vitro, variations in matrix mechanics invoke changes in MSC proliferation, migration and differentiation. However, when incorporating MSCs within injectable, inherently soft hydrogels, this dominance over MSC response substantially limits our ability to couple the ease of application of hydrogels with efficiently directed MSC differentiation, especially in the case of bone generation. Here, we identify differential miRNA expression in response to varying hydrogel stiffness and RhoA activity. We show that modulation of miR-100-5p and miR-143-3p can be used to bias MSC fate and provide mechanistic insight by demonstrating convergence on mTOR signalling. By modulating these mechanosensitive miRNAs, we can enhance osteogenesis in a soft 3D hydrogel. The outcomes of this study provide new understanding of the mechanisms regulating MSC mechanotransduction and differentiation, but also a novel strategy with which to drive MSC fate and significantly impact MSC-based tissue-engineering applications.
[Mh] Termos MeSH primário: Diferenciação Celular/genética
Proliferação Celular/genética
Células Mesenquimais Estromais/metabolismo
MicroRNAs/genética
[Mh] Termos MeSH secundário: Células Cultivadas
Regulação da Expressão Gênica
Seres Humanos
Hidrogéis/metabolismo
Mecanotransdução Celular
Células Mesenquimais Estromais/citologia
Microscopia Confocal
Osteogênese/genética
Transdução de Sinais/genética
Serina-Treonina Quinases TOR/genética
Serina-Treonina Quinases TOR/metabolismo
Engenharia Tecidual/métodos
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Hydrogels); 0 (MicroRNAs); EC 2.7.1.1 (MTOR protein, human); EC 2.7.1.1 (TOR Serine-Threonine Kinases)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180227
[Lr] Data última revisão:
180227
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180119
[St] Status:MEDLINE
[do] DOI:10.1038/s41467-017-02486-0


  7 / 27437 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29352303
[Au] Autor:Gerli MFM; Guyette JP; Evangelista-Leite D; Ghoshhajra BB; Ott HC
[Ad] Endereço:Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
[Ti] Título:Perfusion decellularization of a human limb: A novel platform for composite tissue engineering and reconstructive surgery.
[So] Source:PLoS One;13(1):e0191497, 2018.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Muscle and fasciocutaneous flaps taken from autologous donor sites are currently the most utilized approach for trauma repair, accounting annually for 4.5 million procedures in the US alone. However, the donor tissue size is limited and the complications related to these surgical techniques lead to morbidities, often involving the donor sites. Alternatively, recent reports indicated that extracellular matrix (ECM) scaffolds boost the regenerative potential of the injured site, as shown in a small cohort of volumetric muscle loss patients. Perfusion decellularization is a bioengineering technology that allows the generation of clinical-scale ECM scaffolds with preserved complex architecture and with an intact vascular template, from a variety of donor organs and tissues. We recently reported that this technology is amenable to generate full composite tissue scaffolds from rat and non-human primate limbs. Translating this platform to human extremities could substantially benefit soft tissue and volumetric muscle loss patients providing tissue- and species-specific grafts. In this proof-of-concept study, we show the successful generation a large-scale, acellular composite tissue scaffold from a full cadaveric human upper extremity. This construct retained its morphological architecture and perfusable vascular conduits. Histological and biochemical validation confirmed the successful removal of nuclear and cellular components, and highlighted the preservation of the native extracellular matrix components. Our results indicate that perfusion decellularization can be applied to produce human composite tissue acellular scaffolds. With its preserved structure and vascular template, these biocompatible constructs, could have significant advantages over the currently implanted matrices by means of nutrient distribution, size-scalability and immunological response.
[Mh] Termos MeSH primário: Braço/cirurgia
Procedimentos Cirúrgicos Reconstrutivos/métodos
Engenharia Tecidual/métodos
Tecidos Suporte
[Mh] Termos MeSH secundário: Animais
Braço/anatomia & histologia
Braço/irrigação sanguínea
Reatores Biológicos
Cadáver
Matriz Extracelular/química
Seres Humanos
Imagem Tridimensional
Masculino
Meia-Idade
Perfusão
Ratos
Engenharia Tecidual/instrumentação
Tecidos Suporte/química
Microtomografia por Raio-X
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180226
[Lr] Data última revisão:
180226
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180121
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0191497


  8 / 27437 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29317646
[Au] Autor:Rao L; Qian Y; Khodabukus A; Ribar T; Bursac N
[Ad] Endereço:Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
[Ti] Título:Engineering human pluripotent stem cells into a functional skeletal muscle tissue.
[So] Source:Nat Commun;9(1):126, 2018 01 09.
[Is] ISSN:2041-1723
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The generation of functional skeletal muscle tissues from human pluripotent stem cells (hPSCs) has not been reported. Here, we derive induced myogenic progenitor cells (iMPCs) via transient overexpression of Pax7 in paraxial mesoderm cells differentiated from hPSCs. In 2D culture, iMPCs readily differentiate into spontaneously contracting multinucleated myotubes and a pool of satellite-like cells endogenously expressing Pax7. Under optimized 3D culture conditions, iMPCs derived from multiple hPSC lines reproducibly form functional skeletal muscle tissues (iSKM bundles) containing aligned multi-nucleated myotubes that exhibit positive force-frequency relationship and robust calcium transients in response to electrical or acetylcholine stimulation. During 1-month culture, the iSKM bundles undergo increased structural and molecular maturation, hypertrophy, and force generation. When implanted into dorsal window chamber or hindlimb muscle in immunocompromised mice, the iSKM bundles survive, progressively vascularize, and maintain functionality. iSKM bundles hold promise as a microphysiological platform for human muscle disease modeling and drug development.
[Mh] Termos MeSH primário: Músculo Esquelético/citologia
Mioblastos/citologia
Células-Tronco Pluripotentes/citologia
Engenharia Tecidual/métodos
[Mh] Termos MeSH secundário: Animais
Diferenciação Celular
Células Cultivadas
Células HEK293
Seres Humanos
Células-Tronco Pluripotentes Induzidas/citologia
Células-Tronco Pluripotentes Induzidas/metabolismo
Camundongos Endogâmicos NOD
Camundongos Knockout
Camundongos Nus
Camundongos SCID
Fibras Musculares Esqueléticas/citologia
Fibras Musculares Esqueléticas/metabolismo
Músculo Esquelético/metabolismo
Mioblastos/metabolismo
Fator de Transcrição PAX7/metabolismo
Células-Tronco Pluripotentes/metabolismo
Transplante de Células-Tronco/métodos
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL
[Nm] Nome de substância:
0 (PAX7 Transcription Factor)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180226
[Lr] Data última revisão:
180226
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180111
[St] Status:MEDLINE
[do] DOI:10.1038/s41467-017-02636-4


  9 / 27437 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28457187
[Au] Autor:Munarin F; Kaiser NJ; Kim TY; Choi BR; Coulombe KLK
[Ad] Endereço:1 School of Engineering, Brown University , Providence, Rhode Island.
[Ti] Título:Laser-Etched Designs for Molding Hydrogel-Based Engineered Tissues.
[So] Source:Tissue Eng Part C Methods;23(5):311-321, 2017 05.
[Is] ISSN:1937-3392
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Rapid prototyping and fabrication of elastomeric molds for sterile culture of engineered tissues allow for the development of tissue geometries that can be tailored to different in vitro applications and customized as implantable scaffolds for regenerative medicine. Commercially available molds offer minimal capabilities for adaptation to unique conditions or applications versus those for which they are specifically designed. Here we describe a replica molding method for the design and fabrication of poly(dimethylsiloxane) (PDMS) molds from laser-etched acrylic negative masters with ∼0.2 mm resolution. Examples of the variety of mold shapes, sizes, and patterns obtained from laser-etched designs are provided. We use the patterned PDMS molds for producing and culturing engineered cardiac tissues with cardiomyocytes derived from human-induced pluripotent stem cells. We demonstrate that tight control over tissue morphology and anisotropy results in modulation of cell alignment and tissue-level conduction properties, including the appearance and elimination of reentrant arrhythmias, or circular electrical activation patterns. Techniques for handling engineered cardiac tissues during implantation in vivo in a rat model of myocardial infarction have been developed and are presented herein to facilitate development and adoption of surgical techniques for use with hydrogel-based engineered tissues. In summary, the method presented herein for engineered tissue mold generation is straightforward and low cost, enabling rapid design iteration and adaptation to a variety of applications in tissue engineering. Furthermore, the burden of equipment and expertise is low, allowing the technique to be accessible to all.
[Mh] Termos MeSH primário: Hidrogéis/química
Lasers
Infarto do Miocárdio/terapia
Miócitos Cardíacos/citologia
Engenharia Tecidual/métodos
[Mh] Termos MeSH secundário: Animais
Animais Recém-Nascidos
Células Cultivadas
Elasticidade
Seres Humanos
Masculino
Miócitos Cardíacos/fisiologia
Ratos
Ratos Sprague-Dawley
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Hydrogels)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180226
[Lr] Data última revisão:
180226
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170502
[St] Status:MEDLINE
[do] DOI:10.1089/ten.TEC.2017.0068


  10 / 27437 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
[PMID]:29381289
[Au] Autor:Ling Q; Wang T; Yu X; Wang SG; Ye ZQ; Liu JH; Yang SW; Zhu XB; Yu J
[Ti] Título:UC-VEGF-SMC Three Dimensional (3D) Nano Scaffolds Exhibits Good Repair Function in Bladder Damage.
[So] Source:J Biomed Nanotechnol;13(3):313-23, 2017 Mar.
[Is] ISSN:1550-7033
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:We constructed a UC-VEGF-SMC three dimensional (3D) scaffold to explore its effect on blood vessel regeneration and bladder repair function in a rabbit model with bladder injury. Rabbit adipose tissue-derived stem cells (ADSCs) were cultured to construct pluripotent stem cell systems that can be induced to differentiate into urothelial cells (UCs) and smooth muscle cells (SMCs). Reverse transcriptase-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), immunofluorescence, MTT assay and HE staining were used in our study. Rabbit models were divided into an experimental group, control group and sham group. The bladder histology, urodynamics, smooth muscle function, stent degradation rate, urothelial permeability and biomechanical determination of rabbits were detected after grafting the scaffold. Correct stem cells based on the ADSC surface marker and found that CD90 and CD105 were positive and that CD34 and CD45 were negative. RT-PCR showed that ADSC-iPS cells expressed the marker gene of embryonic stem cells (ESCs), which indicated that Sox2, Klf4, Oct4 and c-Myc were inserted into the iPS nucleus and that the ADSC-iPS system was constructed successfully. Immunofluorescence and MTT assays indicated that iPS differentiated into mature SMCs and UCs. ELISA and HEMC culturing methods revealed that vascular endothelia growth factor (VEGF) could promote the growth of HMECs. Rabbit bladder repair function (urodynamics, smooth muscle function, urothelial permeability and biomechanical determination) was stronger in the experimental group than in the control group. UC-VEGF-SMC 3D nano scaffold exhibits good repair function for bladder damage, which may helpful for treatment of damaged bladders.
[Mh] Termos MeSH primário: Regeneração Tecidual Guiada/instrumentação
Nanoestruturas/química
Transplante de Células-Tronco/instrumentação
Tecidos Suporte
Doenças da Bexiga Urinária/patologia
Doenças da Bexiga Urinária/terapia
Fator A de Crescimento do Endotélio Vascular/administração & dosagem
[Mh] Termos MeSH secundário: Animais
Desenho de Equipamento
Análise de Falha de Equipamento
Feminino
Regeneração Tecidual Guiada/métodos
Masculino
Nanocápsulas/administração & dosagem
Nanocápsulas/química
Nanocápsulas/ultraestrutura
Nanoestruturas/ultraestrutura
Impressão Tridimensional
Coelhos
Recuperação de Função Fisiológica
Transplante de Células-Tronco/métodos
Células-Tronco/citologia
Células-Tronco/fisiologia
Engenharia Tecidual/instrumentação
Engenharia Tecidual/métodos
Resultado do Tratamento
Doenças da Bexiga Urinária/fisiopatologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Nanocapsules); 0 (Vascular Endothelial Growth Factor A)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180223
[Lr] Data última revisão:
180223
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180131
[St] Status:MEDLINE



página 1 de 2744 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde