Base de dados : MEDLINE
Pesquisa : E07.305.124.150 [Categoria DeCS]
Referências encontradas : 3790 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 379 ir para página                         

  1 / 3790 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28942276
[Au] Autor:Wang H; Cao X; Li L; Fang Z; Li X
[Ad] Endereço:School of Energy and Environment, Southeast University, Nanjing 210096, China. Electronic address: lwcq306@163.com.
[Ti] Título:Augmenting atrazine and hexachlorobenzene degradation under different soil redox conditions in a bioelectrochemistry system and an analysis of the relevant microorganisms.
[So] Source:Ecotoxicol Environ Saf;147:735-741, 2018 Jan.
[Is] ISSN:1090-2414
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:Soil microbial fuel cells (MFCs) are a sustainable technology that degrades organic pollutants while generating electricity. However, there have been no detailed studies of the mechanisms of pollutant degradation in soil MFCs. In this study, the effects of external resistance and electrode effectiveness on atrazine and hexachlorobenzene (HCB) degradation were evaluated, the performance of soil MFCs in the degradation of these pollutants under different soil redox conditions was assessed, and the associated microorganisms in the anode were investigated. With an external resistance of 20Ω, the degradation efficiencies of atrazine and HCB were 95% and 78%, respectively. The degradation efficiency, degradation rate increased with decreasing external resistance, while the half-life decreased. There were different degradation trends for different pollutants under different soil redox conditions. The fastest degradation rate of atrazine was in the upper MFC section (aerobic), whereas that of HCB was in the lower MFC section (anaerobic). The results showed that electrode effectiveness played a significant role in pollution degradation. In addition, the microbial community analysis demonstrated that Proteobacteria, especially Deltaproteobacteria involved in current generation was extremely abundant (27.49%) on soil MFC anodes, although the percentage abundances of atrazine degrading Rhodocyclaceae (8.77%), Desulfitobacterium (0.64%), and HCB degrading Desulfuromonas (0.73%), were considerably lower. The results of the study suggested that soil MFCs can enhance the degradation of atrazine and HCB, and bioelectrochemical reduction was the main mechanism for the pollutants degradation.
[Mh] Termos MeSH primário: Atrazina/análise
Fontes de Energia Bioelétrica/microbiologia
Técnicas Eletroquímicas/métodos
Hexaclorobenzeno/análise
Poluentes do Solo/análise
Solo/química
[Mh] Termos MeSH secundário: Aerobiose
Anaerobiose
Biodegradação Ambiental
Eletrodos
Meia-Vida
Cinética
Oxirredução
Proteobactérias/crescimento & desenvolvimento
Bactérias Redutoras de Enxofre/crescimento & desenvolvimento
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Soil); 0 (Soil Pollutants); 4Z87H0LKUY (Hexachlorobenzene); QJA9M5H4IM (Atrazine)
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180308
[Lr] Data última revisão:
180308
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170925
[St] Status:MEDLINE


  2 / 3790 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28471044
[Au] Autor:Villano M; Paiano P; Palma E; Miccheli A; Majone M
[Ad] Endereço:Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy.
[Ti] Título:Electrochemically Driven Fermentation of Organic Substrates with Undefined Mixed Microbial Cultures.
[So] Source:ChemSusChem;10(15):3091-3097, 2017 08 10.
[Is] ISSN:1864-564X
[Cp] País de publicação:Germany
[La] Idioma:eng
[Ab] Resumo:Growing scientific interest in mixed microbial culture-based anaerobic biotechnologies for the production of value-added chemicals and fuels from organic waste residues requires a parallel focus on the development and implementation of strategies to control the distribution of products. This study examined the feasibility of an electrofermentation approach, based on the introduction of a polarized (-700 mV vs. the standard hydrogen electrode) graphite electrode in the fermentation medium, to steer the product distribution during the conversion of organic substrates (glucose, ethanol, and acetate supplied as single compounds or in mixtures) by undefined mixed microbial cultures. In batch experiments, the polarized electrode triggered a nearly 20-fold increase (relative to open circuit controls) in the yield of isobutyrate production (0.43±0.01 vs. 0.02±0.02 mol mol glucose) during the anaerobic fermentation of the ternary mixture of substrates, without adversely affecting the rate of substrate bioconversion. The observed change in the fermentative metabolism was most likely triggered by the (potentiostatic) regulation of the oxidation-reduction potential of the reaction medium rather than by the electrode serving as an electron donor.
[Mh] Termos MeSH primário: Fontes de Energia Bioelétrica/microbiologia
Fermentação
Compostos Orgânicos/metabolismo
[Mh] Termos MeSH secundário: Técnicas de Cultura
Eletroquímica
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Organic Chemicals)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:180118
[Lr] Data última revisão:
180118
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170505
[St] Status:MEDLINE
[do] DOI:10.1002/cssc.201700360


  3 / 3790 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:27770416
[Au] Autor:Besic S; Minteer SD
[Ad] Endereço:Department of Chemistry, Saint Louis University, Saint Louis, MO, 63103, USA.
[Ti] Título:Micellar Polymer Encapsulation of Enzymes.
[So] Source:Methods Mol Biol;1504:93-108, 2017.
[Is] ISSN:1940-6029
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Although enzymes are highly efficient and selective catalysts, there have been problems incorporating them into fuel cells. Early enzyme-based fuel cells contained enzymes in solution rather than immobilized on the electrode surface. One problem utilizing an enzyme in solution is an issue of transport associated with long diffusion lengths between the site of bioelectrocatalysis and the electrode. This issue drastically decreases the theoretical overall power output due to the poor electron conductivity. On the other hand, enzymes immobilized at the electrode surface have eliminated the issue of poor electron conduction due to close proximity of electron transfer between electrode and the biocatalyst. Another problem is inefficient and short term stability of catalytic activity within the enzyme that is suspended in free flowing solution. Enzymes in solutions are only stable for hours to days, whereas immobilized enzymes can be stable for weeks to months and now even years. Over the last decade, there has been substantial research on immobilizing enzymes at electrode surfaces for biofuel cell and sensor applications. The most commonly used techniques are sandwich or wired. Sandwich techniques are powerful and successful for enzyme immobilization; however, the enzymes optimal activity is not retained due to the physical distress applied by the polymer limiting its applications as well as the non-uniform distribution of the enzyme and the diffusion of analyte through the polymer is slowed significantly. Wired techniques have shown to extend the lifetime of an enzyme at the electrode surface; however, this technique is very hard to master due to specific covalent bonding of enzyme and polymer which changes the three-dimensional configuration of enzyme and with that decreases the optimal catalytic activity. This chapter details encapsulation techniques where an enzyme will be immobilized within the pores/pockets of the hydrophobically modified micellar polymers such as Nafion and chitosan. This strategy has been shown to safely immobilize enzymes at electrode surfaces with storage and continuous operation lifetime of more than 2 years.
[Mh] Termos MeSH primário: Quitosana/análogos & derivados
Enzimas Imobilizadas/química
Polímeros de Fluorcarboneto/química
Micelas
[Mh] Termos MeSH secundário: Aminação
Fontes de Energia Bioelétrica
Técnicas Biossensoriais
Eletrodos
Interações Hidrofóbicas e Hidrofílicas
Oxirredução
Porosidade
Compostos de Amônio Quaternário/química
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Enzymes, Immobilized); 0 (Fluorocarbon Polymers); 0 (Micelles); 0 (Quaternary Ammonium Compounds); 39464-59-0 (perfluorosulfonic acid); 9012-76-4 (Chitosan)
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180115
[Lr] Data última revisão:
180115
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161023
[St] Status:MEDLINE


  4 / 3790 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27771137
[Au] Autor:Osikoya AO; Tiwari A
[Ad] Endereço:Biosensors and Bioelectronics Centre, IFM, Linköping University, 58183 Linköping, Sweden; Applied Chemistry and Nanoscience Laboratory, Department of Chemistry, Vaal University of Technology, Private Bag X021, Vanderbijlpark, South Africa.
[Ti] Título:Recent advances in 2D bioelectronics.
[So] Source:Biosens Bioelectron;89(Pt 1):1-7, 2017 Mar 15.
[Is] ISSN:1873-4235
[Cp] País de publicação:England
[La] Idioma:eng
[Mh] Termos MeSH primário: Técnicas Biossensoriais/instrumentação
Técnicas Eletroquímicas/instrumentação
Eletrônica/instrumentação
Grafite/química
[Mh] Termos MeSH secundário: Animais
Fontes de Energia Bioelétrica
Técnicas Biossensoriais/métodos
Técnicas Eletroquímicas/métodos
Eletrodos
Eletrônica/métodos
Desenho de Equipamento
Seres Humanos
Modelos Moleculares
[Pt] Tipo de publicação:EDITORIAL
[Nm] Nome de substância:
7782-42-5 (Graphite)
[Em] Mês de entrada:1702
[Cu] Atualização por classe:171201
[Lr] Data última revisão:
171201
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161025
[St] Status:MEDLINE


  5 / 3790 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28466460
[Au] Autor:Jadhav DA; Jain SC; Ghangrekar MM
[Ad] Endereço:School of Water Resources, Indian Institute of Technology, Kharagpur, 721302, India.
[Ti] Título:Simultaneous Wastewater Treatment, Algal Biomass Production and Electricity Generation in Clayware Microbial Carbon Capture Cells.
[So] Source:Appl Biochem Biotechnol;183(3):1076-1092, 2017 Nov.
[Is] ISSN:1559-0291
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Performance of microbial carbon capture cells (MCCs), having a low-cost clayware separator, was evaluated in terms of wastewater treatment and electricity generation using algae Chlorella pyrenoidosa in MCC-1 and Anabaena ambigua in MCC-2 and without algae in a cathodic chamber of MCC-3. Higher power production was achieved in MCC-1 (6.4 W/m ) compared to MCC-2 (4.29 W/m ) and MCC-3 (3.29 W/m ). Higher coulombic efficiency (15.23 ± 1.30%) and biomass production (66.4 ± 4.7 mg/(L*day)) in MCC-1 indicated the superiority of Chlorella over Anabaena algae for carbon capture and oxygen production to facilitate the cathodic reduction. Algal biofilm formation on the cathode surface of MCC-1 increased dissolved oxygen in the catholyte and decreased the cathodic charge transfer resistance with increase in reduction current. Electrochemical analyses revealed slow cathodic reactions and increase in internal resistance in MCC-2 (55 Ω) than MCC-1 (30 Ω), due to lower oxygen produced by Anabaena algae. Thus, biomass production in conjunction with wastewater treatment, CO sequestration and electricity generation can be achieved using Chlorella algal biocathode in MCC.
[Mh] Termos MeSH primário: Fontes de Energia Bioelétrica/microbiologia
Biomassa
Carbono/metabolismo
Chlorella vulgaris/metabolismo
Gerenciamento de Resíduos
Águas Residuais/química
[Mh] Termos MeSH secundário: Eletroquímica
Eletrodos
Fatores de Tempo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Waste Water); 7440-44-0 (Carbon)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171128
[Lr] Data última revisão:
171128
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170504
[St] Status:MEDLINE
[do] DOI:10.1007/s12010-017-2485-5


  6 / 3790 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29020016
[Au] Autor:Kim H; Cheang UK; Kim MJ
[Ad] Endereço:Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, United Stated of America.
[Ti] Título:Autonomous dynamic obstacle avoidance for bacteria-powered microrobots (BPMs) with modified vector field histogram.
[So] Source:PLoS One;12(10):e0185744, 2017.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:In order to broaden the use of microrobots in practical fields, autonomous control algorithms such as obstacle avoidance must be further developed. However, most previous studies of microrobots used manual motion control to navigate past tight spaces and obstacles while very few studies demonstrated the use of autonomous motion. In this paper, we demonstrated a dynamic obstacle avoidance algorithm for bacteria-powered microrobots (BPMs) using electric field in fluidic environments. A BPM consists of an artificial body, which is made of SU-8, and a high dense layer of harnessed bacteria. BPMs can be controlled using externally applied electric fields due to the electrokinetic property of bacteria. For developing dynamic obstacle avoidance for BPMs, a kinematic model of BPMs was utilized to prevent collision and a finite element model was used to characteristic the deformation of an electric field near the obstacle walls. In order to avoid fast moving obstacles, we modified our previously static obstacle avoidance approach using a modified vector field histogram (VFH) method. To validate the advanced algorithm in experiments, magnetically controlled moving obstacles were used to intercept the BPMs as the BPMs move from the initial position to final position. The algorithm was able to successfully guide the BPMs to reach their respective goal positions while avoiding the dynamic obstacles.
[Mh] Termos MeSH primário: Algoritmos
Fontes de Energia Bioelétrica
Robótica/métodos
Serratia/fisiologia
[Mh] Termos MeSH secundário: Simulação por Computador
Movimento (Física)
Processos Estocásticos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171031
[Lr] Data última revisão:
171031
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171012
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0185744


  7 / 3790 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28847080
[Au] Autor:Ye B; Luo H; Lu Y; Liu G; Zhang R; Li X
[Ad] Endereço:Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
[Ti] Título:Improved performance of the microbial electrolysis desalination and chemical-production cell with enlarged anode and high applied voltages.
[So] Source:Bioresour Technol;244(Pt 1):913-919, 2017 Nov.
[Is] ISSN:1873-2976
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The aim of this study was to improve performance of the microbial electrolysis desalination and chemical-production cell (MEDCC) using enlarged anode and high applied voltages. MEDCCs with anode lengths of 9 and 48cm (i.e., the 9cm-anode MEDCC and 48cm-anode MEDCC, respectively) were tested under different voltages (1.2-3.0V). Our results demonstrated for the first time that the MEDCC could maintain high performance even under the applied voltage higher than that for water dissociation (i.e., 1.8V). Under the applied voltage of 2.5V, the maximum current density in the 48cm-anode MEDCC reached 32.8±2.6A/m , which is one of the highest current densities reported so far in the bioelectrochemical system (BES). The relative abundance of Geobacter was changed along the anode length. Our results show the great potential of the BES with enlarged anode and high applied voltages.
[Mh] Termos MeSH primário: Fontes de Energia Bioelétrica
[Mh] Termos MeSH secundário: Bactérias
Eletrodos
Eletrólise
Geobacter
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171023
[Lr] Data última revisão:
171023
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170830
[St] Status:MEDLINE


  8 / 3790 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28844691
[Au] Autor:Srivastava P; Dwivedi S; Kumar N; Abbassi R; Garaniya V; Yadav AK
[Ad] Endereço:CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India; Australian Maritime College (AMC), University of Tasmania, Launceston 7250, Australia.
[Ti] Título:Performance assessment of aeration and radial oxygen loss assisted cathode based integrated constructed wetland-microbial fuel cell systems.
[So] Source:Bioresour Technol;244(Pt 1):1178-1182, 2017 Nov.
[Is] ISSN:1873-2976
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The present study explores low-cost cathode development possibility using radial oxygen loss (ROL) of Canna indica plants and intermittent aeration (IA) for wastewater treatment and electricity generation in constructed wetland-microbial fuel cell (CW-MFC) system. Two CW-MFC microcosms were developed. Amongst them, one microcosm was planted with Canna indica plants for evaluating the ROL dependent cathode reaction (CW-MFC dependent on ROL) and another microcosm was equipped with intermittent aeration for evaluating the intermittent aeration dependent cathode reaction (CW-MFC with additional IA). The CW-MFC with additional IA has achieved 78.71% and 53.23%, and CW-MFC dependent on ROL has achieved 72.17% and 46.77% COD removal from synthetic wastewater containing glucose loads of 0.7gL and 2.0gL , respectively. The maximum power density of 31.04mWm and 19.60mWm was achieved in CW-MFC with additional IA and CW-MFC dependent on ROL, respectively.
[Mh] Termos MeSH primário: Fontes de Energia Bioelétrica
Zonas Úmidas
[Mh] Termos MeSH secundário: Eletricidade
Eletrodos
Oxigênio
Águas Residuais
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Waste Water); S88TT14065 (Oxygen)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171023
[Lr] Data última revisão:
171023
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170829
[St] Status:MEDLINE


  9 / 3790 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28838788
[Au] Autor:Ren Y; Chen J; Shi Y; Li X; Yang N; Wang X
[Ad] Endereço:Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address: ypren@jiangnan.edu.cn.
[Ti] Título:Anolyte recycling enhanced bioelectricity generation of the buffer-free single-chamber air-cathode microbial fuel cell.
[So] Source:Bioresour Technol;244(Pt 1):1183-1187, 2017 Nov.
[Is] ISSN:1873-2976
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Anolyte acidification is an inevitable restriction for the bioelectricity generation of buffer-free microbial fuel cells (MFCs). In this work, acidification of the buffer-free KCl anolyte has been thoroughly eliminated through anolyte recycling. The accumulated HCO concentration in the recycled KCl anolyte was above 50mM, which played as natural buffer and elevated the anolyte pH to above 8. The maximum power density (P ) increased from 322.9mWm to 527.2mWm , which is comparable with the phosphate buffered MFC. Besides Geobacter genus, the gradually increased anolyte pH and conductivity induced the growing of electrochemically active Geoalkalibacter genus, in the anode biofilm. Anolyte recycling is a feasible strategy to strengthen the self-buffering capacity of buffer-free MFCs, thoroughly eliminate the anolyte acidification and prominently enhance the electric power.
[Mh] Termos MeSH primário: Fontes de Energia Bioelétrica
Geobacter
[Mh] Termos MeSH secundário: Tampões (Química)
Eletricidade
Eletrodos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Buffers)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171023
[Lr] Data última revisão:
171023
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170826
[St] Status:MEDLINE


  10 / 3790 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28834783
[Au] Autor:Stager JL; Zhang X; Logan BE
[Ad] Endereço:Department of Civil and Environmental Engineering, 212 Sackett Building, The Pennsylvania State University, University Park, PA 16802, United States.
[Ti] Título:Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater.
[So] Source:Bioelectrochemistry;118:154-160, 2017 Dec.
[Is] ISSN:1878-562X
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:Power generation using microbial fuel cells (MFCs) must provide stable, continuous conversion of organic matter in wastewaters into electricity. However, when relatively small diameter (0.8cm) graphite fiber brush anodes were placed close to the cathodes in MFCs, power generation was unstable during treatment of low strength domestic wastewater. One reactor produced 149mW/m before power generation failed, while the other reactor produced 257mW/m , with both reactors exhibiting severe power overshoot in polarization tests. Using separators or activated carbon cathodes did not result in stable operation as the reactors continued to exhibit power overshoot based on polarization tests. However, adding acetate (1g/L) to the wastewater produced stable performance during fed batch and continuous flow operation, and there was no power overshoot in polarization tests. These results highlight the importance of wastewater strength and brush anode size for producing stable and continuous power in compact MFCs.
[Mh] Termos MeSH primário: Acetatos/farmacologia
Fontes de Energia Bioelétrica/microbiologia
Eliminação de Resíduos Líquidos
Águas Residuais/microbiologia
[Mh] Termos MeSH secundário: Análise da Demanda Biológica de Oxigênio
Carvão Vegetal/química
Eletrodos
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Acetates); 0 (Waste Water); 16291-96-6 (Charcoal)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170927
[Lr] Data última revisão:
170927
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170824
[St] Status:MEDLINE



página 1 de 379 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde