Base de dados : MEDLINE
Pesquisa : G02.111.570.820.709.805 [Categoria DeCS]
Referências encontradas : 4180 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 418 ir para página                         

  1 / 4180 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29374258
[Au] Autor:Hirata T; Mishra SK; Nakamura S; Saito K; Motooka D; Takada Y; Kanzawa N; Murakami Y; Maeda Y; Fujita M; Yamaguchi Y; Kinoshita T
[Ad] Endereço:Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan.
[Ti] Título:Identification of a Golgi GPI-N-acetylgalactosamine transferase with tandem transmembrane regions in the catalytic domain.
[So] Source:Nat Commun;9(1):405, 2018 01 26.
[Is] ISSN:2041-1723
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Many eukaryotic proteins are anchored to the cell surface via the glycolipid glycosylphosphatidylinositol (GPI). Mammalian GPIs have a conserved core but exhibit diverse N-acetylgalactosamine (GalNAc) modifications, which are added via a yet unresolved process. Here we identify the Golgi-resident GPI-GalNAc transferase PGAP4 and show by mass spectrometry that PGAP4 knockout cells lose GPI-GalNAc structures. Furthermore, we demonstrate that PGAP4, in contrast to known Golgi glycosyltransferases, is not a single-pass membrane protein but contains three transmembrane domains, including a tandem transmembrane domain insertion into its glycosyltransferase-A fold as indicated by comparative modeling. Mutational analysis reveals a catalytic site, a DXD-like motif for UDP-GalNAc donor binding, and several residues potentially involved in acceptor binding. We suggest that a juxtamembrane region of PGAP4 accommodates various GPI-anchored proteins, presenting their acceptor residue toward the catalytic center. In summary, we present insights into the structure of PGAP4 and elucidate the initial step of GPI-GalNAc biosynthesis.
[Mh] Termos MeSH primário: Acetilgalactosamina/química
Glicosilfosfatidilinositóis/química
Complexo de Golgi/metabolismo
N-Acetilgalactosaminiltransferases/química
[Mh] Termos MeSH secundário: Acetilgalactosamina/biossíntese
Motivos de Aminoácidos
Animais
Células CHO
Domínio Catalítico
Cricetulus
Cristalografia por Raios X
Expressão Gênica
Vetores Genéticos/química
Vetores Genéticos/metabolismo
Glicosilfosfatidilinositóis/metabolismo
Complexo de Golgi/ultraestrutura
Seres Humanos
Camundongos
Camundongos Knockout
Modelos Moleculares
Mutação
N-Acetilgalactosaminiltransferases/genética
N-Acetilgalactosaminiltransferases/metabolismo
Ligação Proteica
Conformação Proteica em alfa-Hélice
Conformação Proteica em Folha beta
Domínios e Motivos de Interação entre Proteínas
Homologia Estrutural de Proteína
Especificidade por Substrato
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Glycosylphosphatidylinositols); EC 2.4.1.- (N-Acetylgalactosaminyltransferases); EC 2.4.1.41 (polypeptide N-acetylgalactosaminyltransferase); KM15WK8O5T (Acetylgalactosamine)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180227
[Lr] Data última revisão:
180227
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180128
[St] Status:MEDLINE
[do] DOI:10.1038/s41467-017-02799-0


  2 / 4180 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29352301
[Au] Autor:Shah BS; Ashwood HE; Harrop SJ; Farrugia DN; Paulsen IT; Mabbutt BC
[Ad] Endereço:Department of Molecular Sciences, Macquarie University, Sydney, Australia.
[Ti] Título:Crystal structure of a UDP-GlcNAc epimerase for surface polysaccharide biosynthesis in Acinetobacter baumannii.
[So] Source:PLoS One;13(1):e0191610, 2018.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:With new strains of Acinetobacter baumannii undergoing genomic analysis, it has been possible to define regions of genomic plasticity (RGPs), encoding specific adaptive elements. For a selected RGP from a community-derived isolate of A. baumannii, we outline sequences compatible with biosynthetic machinery of surface polysaccharides, specifically enzymes utilized in the dehydration and conversion of UDP-N-acetyl-D-glucosamine (UDP-D-GlcNAc). We have determined the crystal structure of one of these, the epimerase Ab-WbjB. This dehydratase belongs to the 'extended' short-chain dehydrogenase/reductase (SDR) family, related in fold to previously characterised enzymes CapE and FlaA1. Our 2.65Å resolution structure of Ab-WbjB shows a hexamer, organised into a trimer of chain pairs, with coenzyme NADP+ occupying each chain. Specific active-site interactions between each coenzyme and a lysine quaternary group of a neighbouring chain interconnect adjacent dimers, so stabilising the hexameric form. We show UDP-GlcNAc to be a specific substrate for Ab-WbjB, with binding evident by ITC (Ka = 0.23 µmol-1). The sequence of Ab-WbjB shows variation from the consensus active-site motifs of many SDR enzymes, demonstrating a likely catalytic role for a specific threonine sidechain (as an alternative to tyrosine) in the canonical active site chemistry of these epimerases.
[Mh] Termos MeSH primário: Acinetobacter baumannii/enzimologia
Proteínas de Bactérias/química
Carboidratos Epimerases/química
[Mh] Termos MeSH secundário: Acinetobacter baumannii/genética
Acinetobacter baumannii/isolamento & purificação
Sequência de Aminoácidos
Proteínas de Bactérias/genética
Proteínas de Bactérias/metabolismo
Carboidratos Epimerases/genética
Carboidratos Epimerases/metabolismo
Domínio Catalítico
Cristalografia por Raios X
Seres Humanos
Modelos Moleculares
Polissacarídeos Bacterianos/biossíntese
Conformação Proteica
Domínios Proteicos
Estrutura Quaternária de Proteína
Homologia de Sequência de Aminoácidos
Eletricidade Estática
Homologia Estrutural de Proteína
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Polysaccharides, Bacterial); EC 5.1.3.- (Carbohydrate Epimerases)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180226
[Lr] Data última revisão:
180226
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180121
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0191610


  3 / 4180 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29199987
[Au] Autor:Shornikov A; Tran H; Macias J; Halavaty AS; Minasov G; Anderson WF; Kuhn ML
[Ad] Endereço:Department of Chemistry and Biochemistry, San Francisco State University, USA.
[Ti] Título:Structure of the Bacillus anthracis dTDP-L-rhamnose-biosynthetic enzyme dTDP-4-dehydrorhamnose 3,5-epimerase (RfbC).
[So] Source:Acta Crystallogr F Struct Biol Commun;73(Pt 12):664-671, 2017 Dec 01.
[Is] ISSN:2053-230X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The exosporium layer of Bacillus anthracis spores is rich in L-rhamnose, a common bacterial cell-wall component, which often contributes to the virulence of pathogens by increasing their adherence and immune evasion. The biosynthetic pathway used to form the activated L-rhamnose donor dTDP-L-rhamnose consists of four enzymes (RfbA, RfbB, RfbC and RfbD) and is an attractive drug target because there are no homologs in mammals. It was found that co-purifying and screening RfbC (dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase) from B. anthracis in the presence of the other three B. anthracis enzymes of the biosynthetic pathway yielded crystals that were suitable for data collection. RfbC crystallized as a dimer and its structure was determined at 1.63 Šresolution. Two different ligands were bound in the protein structure: pyrophosphate in the active site of one monomer and dTDP in the other monomer. A structural comparison with RfbC homologs showed that the key active-site residues are conserved across kingdoms.
[Mh] Termos MeSH primário: Bacillus anthracis/enzimologia
Proteínas de Bactérias/química
Carboidratos Epimerases/química
[Mh] Termos MeSH secundário: Proteínas de Bactérias/metabolismo
Carboidratos Epimerases/metabolismo
Domínio Catalítico
Cristalografia por Raios X
Difosfatos/química
Difosfatos/metabolismo
Modelos Moleculares
Conformação Proteica
Homologia Estrutural de Proteína
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Diphosphates); 4E862E7GRQ (diphosphoric acid); EC 5.1.3.- (Carbohydrate Epimerases); EC 5.1.3.13 (dTDP-4-ketorhamnose 3,5-epimerase)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180222
[Lr] Data última revisão:
180222
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171205
[St] Status:MEDLINE
[do] DOI:10.1107/S2053230X17015849


  4 / 4180 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29199984
[Au] Autor:Law A; Stergioulis A; Halavaty AS; Minasov G; Anderson WF; Kuhn ML
[Ad] Endereço:Department of Chemistry and Biochemistry, San Francisco State University, USA.
[Ti] Título:Structure of the Bacillus anthracis dTDP-L-rhamnose-biosynthetic enzyme dTDP-4-dehydrorhamnose reductase (RfbD).
[So] Source:Acta Crystallogr F Struct Biol Commun;73(Pt 12):644-650, 2017 Dec 01.
[Is] ISSN:2053-230X
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Bacillus anthracis is the causative agent of the deadly disease Anthrax. Its use in bioterrorism and its ability to re-emerge have brought renewed interest in this organism. B. anthracis is a Gram-positive bacterium that adds L-rhamnose to its cell-wall polysaccharides using the activated donor dTDP-ß-L-rhamnose. The enzymes involved in the biosynthesis of the activated donor are absent in humans, which make them ideal targets for therapeutic development to combat pathogens. Here, the 2.65 Šresolution crystal structure of the fourth enzyme in the dTDP-ß-L-rhamnose-biosynthetic pathway from B. anthracis, dTDP-4-dehydro-ß-L-rhamnose reductase (RfbD), is presented in complex with NADP . This enzyme catalyzes the reduction of dTDP-4-dehydro-ß-L-rhamnose to dTDP-ß-L-rhamnose. Although the protein was co-crystallized in the presence of Mg , the protein lacks the conserved residues that coordinate Mg .
[Mh] Termos MeSH primário: Bacillus anthracis/enzimologia
Proteínas de Bactérias/química
Desidrogenases de Carboidrato/química
Desidrogenases de Carboidrato/metabolismo
[Mh] Termos MeSH secundário: Proteínas de Bactérias/genética
Proteínas de Bactérias/metabolismo
Desidrogenases de Carboidrato/genética
Cristalografia por Raios X
Magnésio/metabolismo
Modelos Moleculares
NADP/química
NADP/metabolismo
Açúcares de Nucleosídeo Difosfato/metabolismo
Conformação Proteica
Multimerização Proteica
Homologia Estrutural de Proteína
Especificidade por Substrato
Nucleotídeos de Timina/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Nucleoside Diphosphate Sugars); 0 (Thymine Nucleotides); 2147-59-3 (thymidine diphosphate rhamnose); 53-59-8 (NADP); EC 1.1.- (Carbohydrate Dehydrogenases); EC 1.1.1.133 (dTDP-4-dehydrorhamnose reductase); I38ZP9992A (Magnesium)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180222
[Lr] Data última revisão:
180222
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171205
[St] Status:MEDLINE
[do] DOI:10.1107/S2053230X17015746


  5 / 4180 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29371662
[Au] Autor:Bohl TE; Shi K; Lee JK; Aihara H
[Ad] Endereço:Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA.
[Ti] Título:Crystal structure of lipid A disaccharide synthase LpxB from Escherichia coli.
[So] Source:Nat Commun;9(1):377, 2018 01 25.
[Is] ISSN:2041-1723
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Most Gram-negative bacteria are surrounded by a glycolipid called lipopolysaccharide (LPS), which forms a barrier to hydrophobic toxins and, in pathogenic bacteria, is a virulence factor. During LPS biosynthesis, a membrane-associated glycosyltransferase (LpxB) forms a tetra-acylated disaccharide that is further acylated to form the membrane anchor moiety of LPS. Here we solve the structure of a soluble and catalytically competent LpxB by X-ray crystallography. The structure reveals that LpxB has a glycosyltransferase-B family fold but with a highly intertwined, C-terminally swapped dimer comprising four domains. We identify key catalytic residues with a product, UDP, bound in the active site, as well as clusters of hydrophobic residues that likely mediate productive membrane association or capture of lipidic substrates. These studies provide the basis for rational design of antibiotics targeting a crucial step in LPS biosynthesis.
[Mh] Termos MeSH primário: Escherichia coli/enzimologia
Lipopolissacarídeos/química
N-Acetilglucosaminiltransferases/química
Difosfato de Uridina/química
[Mh] Termos MeSH secundário: Motivos de Aminoácidos
Carboidratos Epimerases/química
Carboidratos Epimerases/genética
Carboidratos Epimerases/metabolismo
Domínio Catalítico
Clonagem Molecular
Cristalografia por Raios X
Escherichia coli/genética
Expressão Gênica
Vetores Genéticos/química
Vetores Genéticos/metabolismo
Interações Hidrofóbicas e Hidrofílicas
Lipopolissacarídeos/biossíntese
Modelos Moleculares
N-Acetilglucosaminiltransferases/genética
N-Acetilglucosaminiltransferases/metabolismo
Ligação Proteica
Dobramento de Proteína
Domínios e Motivos de Interação entre Proteínas
Multimerização Proteica
Estrutura Secundária de Proteína
Homologia Estrutural de Proteína
Especificidade por Substrato
Thermus thermophilus/enzimologia
Thermus thermophilus/genética
Difosfato de Uridina/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, N.I.H., EXTRAMURAL; RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
[Nm] Nome de substância:
0 (Lipopolysaccharides); 58-98-0 (Uridine Diphosphate); EC 2.4.1.- (N-Acetylglucosaminyltransferases); EC 2.4.1.182 (lipid A disaccharide synthase); EC 5.1.3.- (Carbohydrate Epimerases); EC 5.1.3.14 (UDP acetylglucosamine-2-epimerase)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180215
[Lr] Data última revisão:
180215
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180127
[St] Status:MEDLINE
[do] DOI:10.1038/s41467-017-02712-9


  6 / 4180 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29229393
[Au] Autor:Sakai T; Inoue Y; Terahara N; Namba K; Minamino T
[Ad] Endereço:Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadoaka, Suita, Osaka 565-0871, Japan.
[Ti] Título:A triangular loop of domain D1 of FlgE is essential for hook assembly but not for the mechanical function.
[So] Source:Biochem Biophys Res Commun;495(2):1789-1794, 2018 01 08.
[Is] ISSN:1090-2104
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The bacterial flagellar hook is a short, curved tubular structure made of FlgE. The hook connects the basal body as a rotary motor and the filament as a helical propeller and functions as a universal joint to smoothly transmit torque produced by the motor to the filament. Salmonella FlgE consists of D0, Dc, D1 and D2 domains. Axial interactions between a triangular loop of domain D1 (D1-loop) and domain D2 are postulated to be responsible for hook supercoiling. In contrast, Bacillus FlgE lacks the D1-loop and domain D2. Here, to clarify the roles of the D1-loop and domain D2 in the mechanical function, we carried out deletion analysis of Salmonella FlgE. A deletion of the D1-loop conferred a loss-of-function phenotype whereas that of domain D2 did not. The D1-loop deletion inhibited hook polymerization. Suppressor mutations of the D1-loop deletion was located within FlgD, which acts as the hook cap to promote hook assembly. This suggests a possible interaction between the D1-loop of FlgE and FlgD. Suppressor mutant cells produced straight hooks, but retained the ability to form a flagellar bundle behind a cell body, suggesting that the loop deletion does not affect the bending flexibility of the Salmonella hook.
[Mh] Termos MeSH primário: Proteínas de Bactérias/química
Proteínas de Bactérias/metabolismo
[Mh] Termos MeSH secundário: Proteínas de Bactérias/genética
Flagelos/química
Flagelos/fisiologia
Flagelos/ultraestrutura
Genes Bacterianos
Modelos Moleculares
Proteínas Motores Moleculares/química
Proteínas Motores Moleculares/genética
Proteínas Motores Moleculares/metabolismo
Mutação
Domínios Proteicos
Multimerização Proteica
Salmonella/genética
Salmonella/fisiologia
Deleção de Sequência
Homologia Estrutural de Proteína
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (FlgE protein, Bacteria); 0 (Molecular Motor Proteins)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180212
[Lr] Data última revisão:
180212
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171213
[St] Status:MEDLINE


  7 / 4180 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28989052
[Au] Autor:Matowane RG; Wieteska L; Bamal HD; Kgosiemang IKR; Van Wyk M; Manume NA; Abdalla SMH; Mashele SS; Gront D; Syed K
[Ad] Endereço:Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa.
[Ti] Título:In silico analysis of cytochrome P450 monooxygenases in chronic granulomatous infectious fungus Sporothrix schenckii: Special focus on CYP51.
[So] Source:Biochim Biophys Acta;1866(1):166-177, 2018 01.
[Is] ISSN:0006-3002
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:Sporotrichosis is an emerging chronic, granulomatous, subcutaneous, mycotic infection caused by Sporothrix species. Sporotrichosis is treated with the azole drug itraconazole as ketoconazole is ineffective. It is a well-known fact that azole drugs act by inhibiting cytochrome P450 monooxygenases (P450s), heme-thiolate proteins. To date, nothing is known about P450s in Sporothrix schenckii and the molecular basis of its resistance to ketoconazole. Here we present genome-wide identification, annotation, phylogenetic analysis and comprehensive P450 family-level comparative analysis of S. schenckii P450s with pathogenic fungi P450s, along with a rationale for ketoconazole resistance by S. schenckii based on in silico structural analysis of CYP51. Genome data-mining of S. schenckii revealed 40 P450s in its genome that can be grouped into 32 P450 families and 39 P450 subfamilies. Comprehensive comparative analysis of P450s revealed that S. schenckii shares 11 P450 families with plant pathogenic fungi and has three unique P450 families: CYP5077, CYP5386 and CYP5696 (novel family). Among P450s, CYP51, the main target of azole drugs was also found in S. schenckii. 3D modeling of S. schenckii CYP51 revealed the presence of characteristic P450 motifs with exceptionally large reductase interaction site 2. In silico analysis revealed number of mutations that can be associated with ketoconazole resistance, especially at the channel entrance to the active site. One of possible reason for better stabilization of itraconazole, compared to ketoconazole, is that the more extended molecule of itraconazole may form a hydrogen bond with ASN-230. This in turn may explain its effectiveness against S. schenckii vis-a-vis resistant to ketoconazole. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
[Mh] Termos MeSH primário: Antifúngicos/química
Sistema Enzimático do Citocromo P-450/química
Proteínas Fúngicas/química
Genoma Fúngico
Itraconazol/química
Sporothrix/enzimologia
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Animais
Antifúngicos/farmacologia
Domínio Catalítico
Cristalografia por Raios X
Sistema Enzimático do Citocromo P-450/genética
Sistema Enzimático do Citocromo P-450/metabolismo
Farmacorresistência Fúngica/genética
Proteínas Fúngicas/antagonistas & inibidores
Proteínas Fúngicas/genética
Proteínas Fúngicas/metabolismo
Expressão Gênica
Seres Humanos
Itraconazol/farmacologia
Cetoconazol/química
Cetoconazol/farmacologia
Simulação de Acoplamento Molecular
Família Multigênica
Filogenia
Plantas/microbiologia
Ligação Proteica
Domínios e Motivos de Interação entre Proteínas
Estrutura Secundária de Proteína
Alinhamento de Sequência
Sporothrix/classificação
Sporothrix/efeitos dos fármacos
Sporothrix/genética
Esporotricose/tratamento farmacológico
Esporotricose/microbiologia
Homologia Estrutural de Proteína
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Antifungal Agents); 0 (Fungal Proteins); 304NUG5GF4 (Itraconazole); 9035-51-2 (Cytochrome P-450 Enzyme System); R9400W927I (Ketoconazole)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180208
[Lr] Data última revisão:
180208
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171010
[St] Status:MEDLINE


  8 / 4180 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28821467
[Au] Autor:Kim J; Lee PG; Jung EO; Kim BG
[Ad] Endereço:Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
[Ti] Título:In vitro characterization of CYP102G4 from Streptomyces cattleya: A self-sufficient P450 naturally producing indigo.
[So] Source:Biochim Biophys Acta;1866(1):60-67, 2018 01.
[Is] ISSN:0006-3002
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:Self-sufficient CYP102As possess outstanding hydroxylating activity to fatty acids such as myristic acid. Other CYP102 subfamily members share substrate specificity of CYP102As, but, occasionally, unusual characteristics of its own subfamily have been found. In this study, only one self-sufficient cytochrome P450 from Streptomyces cattleya was renamed from CYP102A_scat to CYP102G4, purified and characterized. UV-Vis spectrometry pattern, FAD/FMN analysis, and protein sequence comparison among CYP102s have shown that CYP102 from Streptomyces cattleya belongs to CYP102G subfamily. It showed hydroxylation activity toward fatty acids generating ω-1, ω-2, and ω-3-hydroxyfatty acids, which is similar to the general substrate specificity of CYP102 family. Unexpectedly, however, expression of CYP102G4 showed indigo production in LB medium batch flask culture, and high catalytic activity (k /K ) for indole was measured as 6.14±0.10min mM . Besides indole, CYP102G4 was able to hydroxylate aromatic compounds such as flavone, benzophenone, and chloroindoles. Homology model has shown such ability to accept aromatic compounds is due to its bigger active site cavity. Unlike other CYP102s, CYP102G4 did not have biased cofactor dependency, which was possibly determined by difference in NAD(P)H binding residues (Ala984, Val990, and Tyr1064) compared to CYP102A1 (Arg966, Lys972 and Trp1046). Overall, a self-sufficient CYP within CYP102G subfamily was characterized using purified enzymes, which appears to possess unique properties such as an only prokaryotic CYP naturally producing indigo.
[Mh] Termos MeSH primário: Proteínas de Bactérias/metabolismo
Sistema Enzimático do Citocromo P-450/metabolismo
Ácidos Graxos/metabolismo
Índigo Carmim/metabolismo
NADPH-Ferri-Hemoproteína Redutase/metabolismo
Streptomyces/enzimologia
[Mh] Termos MeSH secundário: Motivos de Aminoácidos
Proteínas de Bactérias/química
Proteínas de Bactérias/genética
Benzofenonas/metabolismo
Domínio Catalítico
Clonagem Molecular
Sistema Enzimático do Citocromo P-450/química
Sistema Enzimático do Citocromo P-450/genética
Escherichia coli/genética
Escherichia coli/metabolismo
Ácidos Graxos/química
Flavonas/metabolismo
Expressão Gênica
Hidroxilação
Indóis/metabolismo
Cinética
Modelos Moleculares
NADP/química
NADP/metabolismo
NADPH-Ferri-Hemoproteína Redutase/química
NADPH-Ferri-Hemoproteína Redutase/genética
Ligação Proteica
Domínios e Motivos de Interação entre Proteínas
Estrutura Secundária de Proteína
Proteínas Recombinantes/química
Proteínas Recombinantes/genética
Proteínas Recombinantes/metabolismo
Streptomyces/genética
Homologia Estrutural de Proteína
Especificidade por Substrato
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Bacterial Proteins); 0 (Benzophenones); 0 (Fatty Acids); 0 (Flavones); 0 (Indoles); 0 (Recombinant Proteins); 53-59-8 (NADP); 701M4TTV9O (benzophenone); 8724FJW4M5 (indole); 9035-51-2 (Cytochrome P-450 Enzyme System); D3741U8K7L (Indigo Carmine); EC 1.6.2.4 (NADPH-Ferrihemoprotein Reductase); EC 1.6.2.4 (flavocytochrome P450 BM3 monoxygenases); S2V45N7G3B (flavone)
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180208
[Lr] Data última revisão:
180208
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170820
[St] Status:MEDLINE


  9 / 4180 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28461402
[Au] Autor:Lakhssassi N; Colantonio V; Flowers ND; Zhou Z; Henry J; Liu S; Meksem K
[Ad] Endereço:Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, Illinois 62901.
[Ti] Título:Stearoyl-Acyl Carrier Protein Desaturase Mutations Uncover an Impact of Stearic Acid in Leaf and Nodule Structure.
[So] Source:Plant Physiol;174(3):1531-1543, 2017 Jul.
[Is] ISSN:1532-2548
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Stearoyl-acyl carrier protein desaturase (SACPD-C) has been reported to control the accumulation of seed stearic acid; however, no study has previously reported its involvement in leaf stearic acid content and impact on leaf structure and morphology. A subset of an ethyl methanesulfonate mutagenized population of soybean ( ) 'Forrest' was screened to identify mutants within the gene. Using a forward genetics approach, one nonsense and four missense mutants were identified to have high levels of seed, nodule, and leaf stearic acid content. Homology modeling and in silico analysis of the GmSACPD-C enzyme revealed that most of these mutations were localized near or at conserved residues essential for diiron ion coordination. Soybeans carrying mutations at conserved residues showed the highest stearic acid content, and these mutations were found to have deleterious effects on nodule development and function. Interestingly, mutations at nonconserved residues show an increase in stearic acid content yet retain healthy nodules. Thus, random mutagenesis and mutational analysis allows for the achievement of high seed stearic acid content with no associated negative agronomic characteristics. Additionally, expression analysis demonstrates that nodule leghemoglobin transcripts were significantly more abundant in soybeans with deleterious mutations at conserved residues of GmSACPD-C. Finally, we report that mutations cause an increase in leaf stearic acid content and an alteration of leaf structure and morphology in addition to differences in nitrogen-fixing nodule structure.
[Mh] Termos MeSH primário: Oxigenases de Função Mista/metabolismo
Mutação/genética
Folhas de Planta/metabolismo
Proteínas de Plantas/metabolismo
Nódulos Radiculares de Plantas/metabolismo
Feijão de Soja/enzimologia
Ácidos Esteáricos/metabolismo
[Mh] Termos MeSH secundário: Alelos
Sequência de Aminoácidos
Sequência de Bases
Sequência Conservada
Análise Mutacional de DNA
Regulação da Expressão Gênica de Plantas
Testes Genéticos
Leghemoglobina/metabolismo
Oxigenases de Função Mista/química
Oxigenases de Função Mista/genética
Modelos Moleculares
Folhas de Planta/anatomia & histologia
Proteínas de Plantas/química
Proteínas de Plantas/genética
Sementes/metabolismo
Feijão de Soja/genética
Homologia Estrutural de Proteína
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Leghemoglobin); 0 (Plant Proteins); 0 (Stearic Acids); 4ELV7Z65AP (stearic acid); EC 1.- (Mixed Function Oxygenases); EC 1.14.19.2 (acyl-(acyl-carrier-protein)desaturase)
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180115
[Lr] Data última revisão:
180115
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170503
[St] Status:MEDLINE
[do] DOI:10.1104/pp.16.01929


  10 / 4180 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29220409
[Au] Autor:Mata CP; Luque D; Gómez-Blanco J; Rodríguez JM; González JM; Suzuki N; Ghabrial SA; Carrascosa JL; Trus BL; Castón JR
[Ad] Endereço:Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, Madrid, Spain.
[Ti] Título:Acquisition of functions on the outer capsid surface during evolution of double-stranded RNA fungal viruses.
[So] Source:PLoS Pathog;13(12):e1006755, 2017 Dec.
[Is] ISSN:1553-7374
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Unlike their counterparts in bacterial and higher eukaryotic hosts, most fungal viruses are transmitted intracellularly and lack an extracellular phase. Here we determined the cryo-EM structure at 3.7 Å resolution of Rosellinia necatrix quadrivirus 1 (RnQV1), a fungal double-stranded (ds)RNA virus. RnQV1, the type species of the family Quadriviridae, has a multipartite genome consisting of four monocistronic segments. Whereas most dsRNA virus capsids are based on dimers of a single protein, the ~450-Å-diameter, T = 1 RnQV1 capsid is built of P2 and P4 protein heterodimers, each with more than 1000 residues. Despite a lack of sequence similarity between the two proteins, they have a similar α-helical domain, the structural signature shared with the lineage of the dsRNA bluetongue virus-like viruses. Domain insertions in P2 and P4 preferential sites provide additional functions at the capsid outer surface, probably related to enzyme activity. The P2 insertion has a fold similar to that of gelsolin and profilin, two actin-binding proteins with a function in cytoskeleton metabolism, whereas the P4 insertion suggests protease activity involved in cleavage of the P2 383-residue C-terminal region, absent in the mature viral particle. Our results indicate that the intimate virus-fungus partnership has altered the capsid genome-protective and/or receptor-binding functions. Fungal virus evolution has tended to allocate enzyme activities to the virus capsid outer surface.
[Mh] Termos MeSH primário: Proteínas do Capsídeo/metabolismo
Capsídeo/metabolismo
Modelos Moleculares
Vírus de RNA/metabolismo
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Capsídeo/enzimologia
Capsídeo/ultraestrutura
Proteínas do Capsídeo/química
Proteínas do Capsídeo/genética
Sequência Conservada
Microscopia Crioeletrônica
Evolução Molecular
Imagem Tridimensional
Mutagênese Insercional
Conformação Proteica em alfa-Hélice
Conformação Proteica em Folha beta
Domínios e Motivos de Interação entre Proteínas
Multimerização Proteica
Estabilidade Proteica
Vírus de RNA/enzimologia
Vírus de RNA/genética
Vírus de RNA/ultraestrutura
Alinhamento de Sequência
Homologia Estrutural de Proteína
Propriedades de Superfície
Vírion/enzimologia
Vírion/genética
Vírion/metabolismo
Vírion/ultraestrutura
Xylariales/virologia
[Pt] Tipo de publicação:COMPARATIVE STUDY; JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Capsid Proteins)
[Em] Mês de entrada:1801
[Cu] Atualização por classe:180109
[Lr] Data última revisão:
180109
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171209
[St] Status:MEDLINE
[do] DOI:10.1371/journal.ppat.1006755



página 1 de 418 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde