Base de dados : MEDLINE
Pesquisa : G03.143.355 [Categoria DeCS]
Referências encontradas : 593 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 60 ir para página                         

  1 / 593 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28700920
[Au] Autor:Lin C; White RR; Sparkes I; Ashwin P
[Ad] Endereço:Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Lab of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan, China; Department of Mathematics, University of Exeter, Exeter, United Kingdom. Electro
[Ti] Título:Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell.
[So] Source:Biophys J;113(1):214-222, 2017 Jul 11.
[Is] ISSN:1542-0086
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The endoplasmic reticulum (ER) in plant cells forms a highly dynamic network of complex geometry. ER network morphology and dynamics are influenced by a number of biophysical processes, including filament/tubule tension, viscous forces, Brownian diffusion, and interactions with many other organelles and cytoskeletal elements. Previous studies have indicated that ER networks can be thought of as constrained minimal-length networks acted on by a variety of forces that perturb and/or remodel the network. Here, we study two specific biophysical processes involved in remodeling. One is the dynamic relaxation process involving a combination of tubule tension and viscous forces. The other is the rapid creation of cross-connection tubules by direct or indirect interactions with cytoskeletal elements. These processes are able to remodel the ER network: the first reduces network length and complexity whereas the second increases both. Using live cell imaging of ER network dynamics in tobacco leaf epidermal cells, we examine these processes on ER network dynamics. Away from regions of cytoplasmic streaming, we suggest that the dynamic network structure is a balance between the two processes, and we build an integrative model of the two processes for network remodeling. This model produces quantitatively similar ER networks to those observed in experiments. We use the model to explore the effect of parameter variation on statistical properties of the ER network.
[Mh] Termos MeSH primário: Retículo Endoplasmático/metabolismo
Modelos Biológicos
Células Vegetais/metabolismo
[Mh] Termos MeSH secundário: Agrobacterium
Corrente Citoplasmática/fisiologia
Proteínas de Fluorescência Verde/genética
Proteínas de Fluorescência Verde/metabolismo
Proteínas Luminescentes/genética
Proteínas Luminescentes/metabolismo
Microscopia Confocal
Folhas de Planta/citologia
Folhas de Planta/metabolismo
Análise de Célula Única
Tabaco/citologia
Tabaco/metabolismo
Transformação Genética
[Pt] Tipo de publicação:JOURNAL ARTICLE; VALIDATION STUDIES; VIDEO-AUDIO MEDIA
[Nm] Nome de substância:
0 (Luminescent Proteins); 0 (red fluorescent protein); 147336-22-9 (Green Fluorescent Proteins)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170825
[Lr] Data última revisão:
170825
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170713
[St] Status:MEDLINE


  2 / 593 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28288129
[Au] Autor:Kimura K; Mamane A; Sasaki T; Sato K; Takagi J; Niwayama R; Hufnagel L; Shimamoto Y; Joanny JF; Uchida S; Kimura A
[Ad] Endereço:Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan.
[Ti] Título:Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming.
[So] Source:Nat Cell Biol;19(4):399-406, 2017 Apr.
[Is] ISSN:1476-4679
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types. The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.
[Mh] Termos MeSH primário: Caenorhabditis elegans/metabolismo
Corrente Citoplasmática
Retículo Endoplasmático/metabolismo
Microtúbulos/metabolismo
[Mh] Termos MeSH secundário: Animais
Grânulos Citoplasmáticos/metabolismo
Proteínas de Fluorescência Verde/metabolismo
Hidrodinâmica
Microscopia Confocal
Interferência de RNA
Imagem com Lapso de Tempo
Xenopus laevis
Zigoto/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
147336-22-9 (Green Fluorescent Proteins)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:170613
[Lr] Data última revisão:
170613
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170314
[St] Status:MEDLINE
[do] DOI:10.1038/ncb3490


  3 / 593 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28257779
[Au] Autor:Bulychev AA; Komarova AV
[Ad] Endereço:Department of Biophysics, Faculty of Biology, Moscow State University, Moscow 119991, Russia. Electronic address: bulychev@biophys.msu.ru.
[Ti] Título:Photoregulation of photosystem II activity mediated by cytoplasmic streaming in Chara and its relation to pH bands.
[So] Source:Biochim Biophys Acta;1858(5):386-395, 2017 05.
[Is] ISSN:0006-3002
[Cp] País de publicação:Netherlands
[La] Idioma:eng
[Ab] Resumo:Chloroplasts in vivo exposed to strong light export assimilates and excess reducing power to the cytoplasm for metabolic conversions and allocation to neighboring and distant organelles. The cytoplasmic streaming, being particularly fast in characean internodes, distributes the exported metabolites from brightly illuminated cell spots to light-limited regions, which is evident from the transient increase in chlorophyll fluorescence of shaded areas in response to illumination of distant cell regions situated upstream the liquid flow. It is not yet known whether long-distance communications between anchored chloroplasts are interfered by pH banding that commonly arises in characean internodes under the action of continuous or fluctuating light. In this study, microfluorometry, pH-microsensors, and local illumination were combined to examine long-distance transport and subsequent reentry of photosynthetic metabolites, including triose phosphates, into chloroplasts of cell regions producing external alkaline and acid bands. The lateral transmission of metabolic signals between distant chloroplasts was found to operate effectively in cell areas underlying acid zones but was almost fully blocked under alkaline zones. The rates of linear electron flow in chloroplasts of these regions were nearly equal under dim background light, but differed substantially at high light when availability of CO , rather than irradiance, was the rate-limiting factor. Different productions of assimilates by chloroplasts underlying CO -sufficient acid and CO -deficient alkaline zones were a cause for contrasting manifestations of long-distance transport of photosynthetic metabolites. Nonuniform cytoplasmic pH in cells exhibiting pH bands might contribute to different activities of metabolic translocators under high and low pH zones.
[Mh] Termos MeSH primário: Chara/efeitos da radiação
Cloroplastos/efeitos da radiação
Corrente Citoplasmática/efeitos da radiação
Transdução de Sinal Luminoso/efeitos da radiação
Luz
Fotossíntese/efeitos da radiação
Complexo de Proteína do Fotossistema II/efeitos da radiação
[Mh] Termos MeSH secundário: Chara/metabolismo
Cloroplastos/metabolismo
Citofotometria
Transferência de Energia
Concentração de Íons de Hidrogênio
Complexo de Proteína do Fotossistema II/metabolismo
Prótons
Fatores de Tempo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Photosystem II Protein Complex); 0 (Protons)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170824
[Lr] Data última revisão:
170824
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170305
[St] Status:MEDLINE


  4 / 593 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:27552160
[Au] Autor:Nadeau J; Lindensmith C; Deming JW; Fernandez VI; Stocker R
[Ad] Endereço:1 GALCIT, California Institute of Technology , Pasadena, California.
[Ti] Título:Microbial Morphology and Motility as Biosignatures for Outer Planet Missions.
[So] Source:Astrobiology;16(10):755-774, 2016 Oct.
[Is] ISSN:1557-8070
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Meaningful motion is an unambiguous biosignature, but because life in the Solar System is most likely to be microbial, the question is whether such motion may be detected effectively on the micrometer scale. Recent results on microbial motility in various Earth environments have provided insight into the physics and biology that determine whether and how microorganisms as small as bacteria and archaea swim, under which conditions, and at which speeds. These discoveries have not yet been reviewed in an astrobiological context. This paper discusses these findings in the context of Earth analog environments and environments expected to be encountered in the outer Solar System, particularly the jovian and saturnian moons. We also review the imaging technologies capable of recording motility of submicrometer-sized organisms and discuss how an instrument would interface with several types of sample-collection strategies. Key Words: In situ measurement-Biosignatures-Microbiology-Europa-Ice. Astrobiology 16, 755-774.
[Mh] Termos MeSH primário: Archaea/citologia
Bactérias/citologia
Exobiologia/métodos
Meio Ambiente Extraterreno
Voo Espacial
[Mh] Termos MeSH secundário: Corrente Citoplasmática
Terra (Planeta)
Camada de Gelo/microbiologia
Júpiter
Microscopia
Oceanos e Mares
Saturno
Microbiologia da Água
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170926
[Lr] Data última revisão:
170926
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160824
[St] Status:MEDLINE


  5 / 593 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:27472658
[Au] Autor:Niwayama R; Nagao H; Kitajima TS; Hufnagel L; Shinohara K; Higuchi T; Ishikawa T; Kimura A
[Ad] Endereço:Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan.
[Ti] Título:Bayesian Inference of Forces Causing Cytoplasmic Streaming in Caenorhabditis elegans Embryos and Mouse Oocytes.
[So] Source:PLoS One;11(7):e0159917, 2016.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Cellular structures are hydrodynamically interconnected, such that force generation in one location can move distal structures. One example of this phenomenon is cytoplasmic streaming, whereby active forces at the cell cortex induce streaming of the entire cytoplasm. However, it is not known how the spatial distribution and magnitude of these forces move distant objects within the cell. To address this issue, we developed a computational method that used cytoplasm hydrodynamics to infer the spatial distribution of shear stress at the cell cortex induced by active force generators from experimentally obtained flow field of cytoplasmic streaming. By applying this method, we determined the shear-stress distribution that quantitatively reproduces in vivo flow fields in Caenorhabditis elegans embryos and mouse oocytes during meiosis II. Shear stress in mouse oocytes were predicted to localize to a narrower cortical region than that with a high cortical flow velocity and corresponded with the localization of the cortical actin cap. The predicted patterns of pressure gradient in both species were consistent with species-specific cytoplasmic streaming functions. The shear-stress distribution inferred by our method can contribute to the characterization of active force generation driving biological streaming.
[Mh] Termos MeSH primário: Caenorhabditis elegans/embriologia
Corrente Citoplasmática
Oócitos/metabolismo
[Mh] Termos MeSH secundário: Animais
Teorema de Bayes
Hidrodinâmica
Funções Verossimilhança
Camundongos
Modelos Biológicos
Estresse Mecânico
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170804
[Lr] Data última revisão:
170804
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160730
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0159917


  6 / 593 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27166813
[Au] Autor:Monteith CE; Brunner ME; Djagaeva I; Bielecki AM; Deutsch JM; Saxton WM
[Ad] Endereço:Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California.
[Ti] Título:A Mechanism for Cytoplasmic Streaming: Kinesin-Driven Alignment of Microtubules and Fast Fluid Flows.
[So] Source:Biophys J;110(9):2053-65, 2016 05 10.
[Is] ISSN:1542-0086
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The transport of cytoplasmic components can be profoundly affected by hydrodynamics. Cytoplasmic streaming in Drosophila oocytes offers a striking example. Forces on fluid from kinesin-1 are initially directed by a disordered meshwork of microtubules, generating minor slow cytoplasmic flows. Subsequently, to mix incoming nurse cell cytoplasm with ooplasm, a subcortical layer of microtubules forms parallel arrays that support long-range, fast flows. To analyze the streaming mechanism, we combined observations of microtubule and organelle motions with detailed mathematical modeling. In the fast state, microtubules tethered to the cortex form a thin subcortical layer and undergo correlated sinusoidal bending. Organelles moving in flows along the arrays show velocities that are slow near the cortex and fast on the inward side of the subcortical microtubule layer. Starting with fundamental physical principles suggested by qualitative hypotheses, and with published values for microtubule stiffness, kinesin velocity, and cytoplasmic viscosity, we developed a quantitative coupled hydrodynamic model for streaming. The fully detailed mathematical model and its simulations identify key variables that can shift the system between disordered (slow) and ordered (fast) states. Measurements of array curvature, wave period, and the effects of diminished kinesin velocity on flow rates, as well as prior observations on f-actin perturbation, support the model. This establishes a concrete mechanistic framework for the ooplasmic streaming process. The self-organizing fast phase is a result of viscous drag on kinesin-driven cargoes that mediates equal and opposite forces on cytoplasmic fluid and on microtubules whose minus ends are tethered to the cortex. Fluid moves toward plus ends and microtubules are forced backward toward their minus ends, resulting in buckling. Under certain conditions, the buckling microtubules self-organize into parallel bending arrays, guiding varying directions for fast plus-end directed fluid flows that facilitate mixing in a low Reynolds number regime.
[Mh] Termos MeSH primário: Corrente Citoplasmática
Hidrodinâmica
Cinesina/metabolismo
Fenômenos Mecânicos
Microtúbulos/metabolismo
Modelos Biológicos
[Mh] Termos MeSH secundário: Fenômenos Biomecânicos
Movimento
Oócitos/citologia
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T; RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.; RESEARCH SUPPORT, N.I.H., EXTRAMURAL
[Nm] Nome de substância:
EC 3.6.4.4 (Kinesin)
[Em] Mês de entrada:1706
[Cu] Atualização por classe:171118
[Lr] Data última revisão:
171118
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160512
[St] Status:MEDLINE


  7 / 593 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:26337543
[Au] Autor:Okamoto K; Ueda H; Shimada T; Tamura K; Koumoto Y; Tasaka M; Morita MT; Hara-Nishimura I
[Ad] Endereço:a Graduate School of Science, Kyoto University , Kyoto 606-8502 , Japan.
[Ti] Título:An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems.
[So] Source:Plant Signal Behav;11(3):e1010947, 2016.
[Is] ISSN:1559-2324
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:A significant feature of plant cells is the extensive motility of organelles and the cytosol, which was originally defined as cytoplasmic streaming. We suggested previously that a three-way interaction between plant-specific motor proteins myosin XIs, actin filaments, and the endoplasmic reticulum (ER) was responsible for cytoplasmic streaming. (1) Currently, however, there are no reports of molecular components for cytoplasmic streaming other than the actin-myosin-cytoskeleton and ER-related proteins. In the present study, we found that elongated cells of inflorescence stems of Arabidopsis thaliana exhibit vigorous cytoplasmic streaming. Statistical analysis showed that the maximal velocity of plastid movements is 7.26 µm/s, which is much faster than the previously reported velocities of organelles. Surprisingly, the maximal velocity of streaming in the inflorescence stem cells was significantly reduced to 1.11 µm/s in an Arabidopsis mutant, abcb19-101, which lacks ATP BINDING CASSETTE SUBFAMILY B19 (ABCB19) that mediates the polar transport of the phytohormone auxin together with PIN-FORMED (PIN) proteins. Polar auxin transport establishes the auxin concentration gradient essential for plant development and tropisms. Deficiency of ABCB19 activity eventually caused enhanced gravitropic responses of the inflorescence stems and abnormally flexed inflorescence stems. These results suggest that ABCB19-mediated auxin transport plays a role not only in tropism regulation, but also in cytoplasmic streaming.
[Mh] Termos MeSH primário: Transportadores de Cassetes de Ligação de ATP/fisiologia
Proteínas de Arabidopsis/fisiologia
Arabidopsis/metabolismo
Corrente Citoplasmática/genética
Gravitropismo/genética
[Mh] Termos MeSH secundário: Transportadores de Cassetes de Ligação de ATP/genética
Transportadores de Cassetes de Ligação de ATP/metabolismo
Arabidopsis/citologia
Arabidopsis/genética
Arabidopsis/crescimento & desenvolvimento
Proteínas de Arabidopsis/genética
Proteínas de Arabidopsis/metabolismo
Ácidos Indolacéticos/metabolismo
Mutação
Caules de Planta/citologia
Caules de Planta/crescimento & desenvolvimento
Caules de Planta/metabolismo
Transdução de Sinais
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (ABCB19 protein, Arabidopsis); 0 (Arabidopsis Proteins); 0 (Indoleacetic Acids)
[Em] Mês de entrada:1612
[Cu] Atualização por classe:170220
[Lr] Data última revisão:
170220
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:150905
[St] Status:MEDLINE
[do] DOI:10.1080/15592324.2015.1010947


  8 / 593 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:26694322
[Au] Autor:Kikuchi K; Mochizuki O
[Ad] Endereço:Depertment of Bioengineering and Robotics, Graduated School of Engineering, Tohoku University, Sendai, Japan.
[Ti] Título:Diffusive Promotion by Velocity Gradient of Cytoplasmic Streaming (CPS) in Nitella Internodal Cells.
[So] Source:PLoS One;10(12):e0144938, 2015.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Cytoplasmic streaming (CPS) is well known to assist the movement of nutrients, organelles and genetic material by transporting all of the cytoplasmic contents of a cell. CPS is generated by motility organelles that are driven by motor proteins near a membrane surface, where the CPS has been found to have a flat velocity profile in the flow field according to the sliding theory. There is a consistent mixing of contents inside the cell by CPS if the velocity gradient profile is flattened, which is not assisted by advection diffusion but is only supported by Brownian diffusion. Although the precise flow structure of the cytoplasm has an important role for cellular metabolism, the hydrodynamic mechanism of its convection has not been clarified. We conducted an experiment to visualise the flow of cytoplasm in Nitella cells by injecting tracer fluorescent nanoparticles and using a flow visualisation system in order to understand how the flow profile affects their metabolic system. We determined that the velocity field in the cytosol has an obvious velocity gradient, not a flattened gradient, which suggests that the gradient assists cytosolic mixing by Taylor-Aris dispersion more than by Brownian diffusion.
[Mh] Termos MeSH primário: Corrente Citoplasmática
Nitella/fisiologia
[Mh] Termos MeSH secundário: Hidrodinâmica
Proteínas Motores Moleculares/metabolismo
Nitella/ultraestrutura
Proteínas de Plantas/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
0 (Molecular Motor Proteins); 0 (Plant Proteins)
[Em] Mês de entrada:1606
[Cu] Atualização por classe:170220
[Lr] Data última revisão:
170220
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:151224
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0144938


  9 / 593 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:26432645
[Au] Autor:Ueda H; Tamura K; Hara-Nishimura I
[Ad] Endereço:Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
[Ti] Título:Functions of plant-specific myosin XI: from intracellular motility to plant postures.
[So] Source:Curr Opin Plant Biol;28:30-8, 2015 Dec.
[Is] ISSN:1879-0356
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:The plant-specific protein motor class myosin XI is known to function in rapid bulk flow of the cytoplasm (cytoplasmic streaming) and in organellar movements. Recent studies unveiled a wide range of physiological functions of myosin XI motors, from intracellular motility to organ movements. Arabidopsis thaliana has 13 members of myosin XI class. In vegetative organs, myosins XIk, XI1, and XI2 primarily contribute to dynamics and spatial configurations of endoplasmic reticulum that develops a tubular network in the cell periphery and thick strand-like structures in the inner cell regions. Myosin XI-i forms a nucleocytoplasmic linker and is responsible for nuclear movement and shape. In addition to these intracellular functions, myosin XIf together with myosin XIk is involved in the fundamental nature of plants; the actin-myosin XI cytoskeleton regulates organ straightening to adjust plant posture.
[Mh] Termos MeSH primário: Proteínas de Arabidopsis/genética
Arabidopsis/fisiologia
Miosinas/genética
[Mh] Termos MeSH secundário: Citoesqueleto de Actina/metabolismo
Arabidopsis/genética
Proteínas de Arabidopsis/metabolismo
Corrente Citoplasmática
Retículo Endoplasmático/metabolismo
Miosinas/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T; REVIEW
[Nm] Nome de substância:
0 (Arabidopsis Proteins); 0 (myosin XI, Arabidopsis); EC 3.6.4.1 (Myosins)
[Em] Mês de entrada:1609
[Cu] Atualização por classe:151215
[Lr] Data última revisão:
151215
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:151004
[St] Status:MEDLINE


  10 / 593 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:26429865
[Au] Autor:Ishikawa K; Hashimoto M; Namba S
[Ad] Endereço:Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
[Ti] Título:Passive virus movements with organelle dynamics.
[So] Source:Oncotarget;6(31):30437-8, 2015 Oct 13.
[Is] ISSN:1949-2553
[Cp] País de publicação:United States
[La] Idioma:eng
[Mh] Termos MeSH primário: Citoesqueleto de Actina/virologia
Corrente Citoplasmática
Retículo Endoplasmático/virologia
Proteínas do Movimento Viral em Plantas/metabolismo
Vírus de Plantas/fisiologia
Plantas/virologia
[Mh] Termos MeSH secundário: Citoesqueleto de Actina/metabolismo
Retículo Endoplasmático/metabolismo
Interações Hospedeiro-Patógeno
Vírus de Plantas/metabolismo
Plantas/metabolismo
[Pt] Tipo de publicação:EDITORIAL
[Nm] Nome de substância:
0 (Plant Viral Movement Proteins)
[Em] Mês de entrada:1608
[Cu] Atualização por classe:170220
[Lr] Data última revisão:
170220
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:151003
[St] Status:MEDLINE
[do] DOI:10.18632/oncotarget.5897



página 1 de 60 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde