Base de dados : MEDLINE
Pesquisa : G03.194 [Categoria DeCS]
Referências encontradas : 141 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 15 ir para página                         

  1 / 141 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28455339
[Au] Autor:Tanaka M; Hiramoto T; Tada H; Shintani T; Gomi K
[Ad] Endereço:Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics, Graduate School of Agricultural Science, Tohoku University, Aramaki, Aoba-ku, Sendai, Japan.
[Ti] Título:Improved α-Amylase Production by Dephosphorylation Mutation of CreD, an Arrestin-Like Protein Required for Glucose-Induced Endocytosis of Maltose Permease and Carbon Catabolite Derepression in Aspergillus oryzae.
[So] Source:Appl Environ Microbiol;83(13), 2017 Jul 01.
[Is] ISSN:1098-5336
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:produces copious amount of amylolytic enzymes, and MalP, a major maltose permease, is required for the expression of amylase-encoding genes. The expression of these genes is strongly repressed by carbon catabolite repression (CCR) in the presence of glucose. MalP is transported from the plasma membrane to the vacuole by endocytosis, which requires the homolog of E6-AP carboxyl terminus ubiquitin ligase HulA, an ortholog of yeast Rsp5. In yeast, arrestin-like proteins mediate endocytosis as adaptors of Rsp5 and transporters. In the present study, we examined the involvement of CreD, an arrestin-like protein, in glucose-induced MalP endocytosis and CCR of amylase-encoding genes. Deletion of inhibited the glucose-induced endocytosis of MalP, and CreD showed physical interaction with HulA. Phosphorylation of CreD was detected by Western blotting, and two serine residues were determined as the putative phosphorylation sites. However, the phosphorylation state of the serine residues did not regulate MalP endocytosis and its interaction with HulA. Although α-amylase production was significantly repressed by deletion, both phosphorylation and dephosphorylation mimics of CreD had a negligible effect on α-amylase activity. Interestingly, dephosphorylation of CreD was required for CCR relief of amylase genes that was triggered by disruption of the deubiquitinating enzyme-encoding gene The α-amylase activity of the mutant was 1.6-fold higher than that of the wild type, and the dephosphorylation mimic of CreD further improved the α-amylase activity by 2.6-fold. These results indicate that a combination of the dephosphorylation mutation of CreD and disruption increased the production of amylolytic enzymes in In eukaryotes, glucose induces carbon catabolite repression (CCR) and proteolytic degradation of plasma membrane transporters via endocytosis. Glucose-induced endocytosis of transporters is mediated by their ubiquitination, and arrestin-like proteins act as adaptors of transporters and ubiquitin ligases. In this study, we showed that CreD, an arrestin-like protein, is involved in glucose-induced endocytosis of maltose permease and carbon catabolite derepression of amylase gene expression in Dephosphorylation of CreD was required for CCR relief triggered by the disruption of , which encodes a deubiquitinating enzyme; a combination of the phosphorylation-defective mutation of CreD and disruption dramatically improved α-amylase production. This study shows the dual function of an arrestin-like protein and provides a novel approach for improving the production of amylolytic enzymes in .
[Mh] Termos MeSH primário: Arrestina/metabolismo
Aspergillus oryzae/metabolismo
Repressão Catabólica
Endocitose
Proteínas Fúngicas/genética
Proteínas de Transporte de Monossacarídeos/genética
alfa-Amilases/genética
[Mh] Termos MeSH secundário: Arrestina/genética
Aspergillus oryzae/enzimologia
Aspergillus oryzae/genética
Carbono/metabolismo
Proteínas Fúngicas/metabolismo
Regulação Fúngica da Expressão Gênica
Glucose/metabolismo
Proteínas de Transporte de Monossacarídeos/metabolismo
Mutação
Fosforilação
Transporte Proteico
alfa-Amilases/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Arrestin); 0 (Fungal Proteins); 0 (Monosaccharide Transport Proteins); 7440-44-0 (Carbon); 9055-23-6 (maltose permease); EC 3.2.1.1 (alpha-Amylases); IY9XDZ35W2 (Glucose)
[Em] Mês de entrada:1712
[Cu] Atualização por classe:171225
[Lr] Data última revisão:
171225
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170430
[St] Status:MEDLINE


  2 / 141 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28674185
[Au] Autor:Merran J; Corden JL
[Ad] Endereço:Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
[Ti] Título:Yeast RNA-Binding Protein Nab3 Regulates Genes Involved in Nitrogen Metabolism.
[So] Source:Mol Cell Biol;37(18), 2017 Sep 15.
[Is] ISSN:1098-5549
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Termination of RNA polymerase II (Pol II) transcripts occurs through two alternative pathways. Termination of mRNAs is coupled to cleavage and polyadenylation while noncoding transcripts are terminated through the Nrd1-Nab3-Sen1 (NNS) pathway in a process that is linked to RNA degradation by the nuclear exosome. Some mRNA transcripts are also attenuated through premature termination directed by the NNS complex. In this paper we present the results of nuclear depletion of the NNS component Nab3. As expected, many noncoding RNAs fail to terminate properly. In addition, we observe that nitrogen catabolite-repressed genes are upregulated by Nab3 depletion.
[Mh] Termos MeSH primário: Nitrogênio/metabolismo
Proteínas Nucleares/metabolismo
RNA Polimerase II/genética
RNA Mensageiro/genética
RNA Nucleolar Pequeno/genética
Proteínas de Ligação a RNA/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
Saccharomyces cerevisiae/metabolismo
Terminação da Transcrição Genética/fisiologia
[Mh] Termos MeSH secundário: Repressão Catabólica/genética
Códon sem Sentido/genética
Proteínas de Transporte de Glutamato da Membrana Plasmática/genética
Glutamato-Amônia Ligase/antagonistas & inibidores
Glutamato-Amônia Ligase/metabolismo
IMP Desidrogenase/biossíntese
Saccharomyces cerevisiae/genética
Proteínas de Saccharomyces cerevisiae/biossíntese
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Codon, Nonsense); 0 (Glutamate Plasma Membrane Transport Proteins); 0 (NAB3 protein, S cerevisiae); 0 (Nuclear Proteins); 0 (RNA, Messenger); 0 (RNA, Small Nucleolar); 0 (RNA-Binding Proteins); 0 (Saccharomyces cerevisiae Proteins); EC 1.1.1.205 (IMD2 protein, S cerevisiae); EC 1.1.1.205 (IMP Dehydrogenase); EC 2.7.7.- (RNA Polymerase II); EC 6.3.1.2 (Glutamate-Ammonia Ligase); N762921K75 (Nitrogen)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171002
[Lr] Data última revisão:
171002
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170705
[St] Status:MEDLINE


  3 / 141 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28423062
[Au] Autor:Beattie SR; Mark KMK; Thammahong A; Ries LNA; Dhingra S; Caffrey-Carr AK; Cheng C; Black CC; Bowyer P; Bromley MJ; Obar JJ; Goldman GH; Cramer RA
[Ad] Endereço:Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America.
[Ti] Título:Filamentous fungal carbon catabolite repression supports metabolic plasticity and stress responses essential for disease progression.
[So] Source:PLoS Pathog;13(4):e1006340, 2017 Apr.
[Is] ISSN:1553-7374
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Aspergillus fumigatus is responsible for a disproportionate number of invasive mycosis cases relative to other common filamentous fungi. While many fungal factors critical for infection establishment are known, genes essential for disease persistence and progression are ill defined. We propose that fungal factors that promote navigation of the rapidly changing nutrient and structural landscape characteristic of disease progression represent untapped clinically relevant therapeutic targets. To this end, we find that A. fumigatus requires a carbon catabolite repression (CCR) mediated genetic network to support in vivo fungal fitness and disease progression. While CCR as mediated by the transcriptional repressor CreA is not required for pulmonary infection establishment, loss of CCR inhibits fungal metabolic plasticity and the ability to thrive in the dynamic infection microenvironment. Our results suggest a model whereby CCR in an environmental filamentous fungus is dispensable for initiation of pulmonary infection but essential for infection maintenance and disease progression. Conceptually, we argue these data provide a foundation for additional studies on fungal factors required to support fungal fitness and disease progression and term such genes and factors, DPFs (disease progression factors).
[Mh] Termos MeSH primário: Aspergilose/microbiologia
Aspergillus fumigatus/genética
Carbono/metabolismo
Repressão Catabólica
Proteínas Fúngicas/metabolismo
Redes Reguladoras de Genes
[Mh] Termos MeSH secundário: Aspergilose/patologia
Aspergillus fumigatus/fisiologia
Progressão da Doença
Proteínas Fúngicas/genética
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos
Modelos Biológicos
Proteínas Repressoras/genética
Proteínas Repressoras/metabolismo
Estresse Fisiológico
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Fungal Proteins); 0 (Repressor Proteins); 7440-44-0 (Carbon)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:170926
[Lr] Data última revisão:
170926
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170420
[St] Status:MEDLINE
[do] DOI:10.1371/journal.ppat.1006340


  4 / 141 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28196956
[Au] Autor:Halsey CR; Lei S; Wax JK; Lehman MK; Nuxoll AS; Steinke L; Sadykov M; Powers R; Fey PD
[Ad] Endereço:University of Nebraska Medical Center, Department of Pathology and Microbiology, Omaha, Nebraska, USA.
[Ti] Título:Amino Acid Catabolism in and the Function of Carbon Catabolite Repression.
[So] Source:MBio;8(1), 2017 Feb 14.
[Is] ISSN:2150-7511
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:must rapidly adapt to a variety of carbon and nitrogen sources during invasion of a host. Within a staphylococcal abscess, preferred carbon sources such as glucose are limiting, suggesting that survives through the catabolism of secondary carbon sources. encodes pathways to catabolize multiple amino acids, including those that generate pyruvate, 2-oxoglutarate, and oxaloacetate. To assess amino acid catabolism, JE2 and mutants were grown in complete defined medium containing 18 amino acids but lacking glucose (CDM). A mutation in the gene, coding for glutamate dehydrogenase, which generates 2-oxoglutarate from glutamate, significantly reduced growth in CDM, suggesting that glutamate and those amino acids generating glutamate, particularly proline, serve as the major carbon source in this medium. Nuclear magnetic resonance (NMR) studies confirmed this supposition. Furthermore, a mutation in the gene, coding for acetate kinase, also abrogated growth of JE2 in CDM, suggesting that ATP production from pyruvate-producing amino acids is also critical for growth. In addition, although a functional respiratory chain was absolutely required for growth, the oxygen consumption rate and intracellular ATP concentration were significantly lower during growth in CDM than during growth in glucose-containing media. Finally, transcriptional analyses demonstrated that expression levels of genes coding for the enzymes that synthesize glutamate from proline, arginine, and histidine are repressed by CcpA and carbon catabolite repression. These data show that pathways important for glutamate catabolism or ATP generation via Pta/AckA are important for growth in niches where glucose is not abundant, such as abscesses within skin and soft tissue infections. is a significant cause of both morbidity and mortality worldwide. This bacterium causes infections in a wide variety of organ systems, the most common being skin and soft tissue. Within a staphylococcal abscess, levels of glucose, a preferred carbon source, are limited due to the host immune response. Therefore, must utilize other available carbon sources such as amino acids or peptides to proliferate. Our results show that glutamate and amino acids that serve as substrates for glutamate synthesis, particularly proline, function as major carbon sources during growth, whereas other amino acids that generate pyruvate are important for ATP synthesis via substrate-level phosphorylation in the Pta-AckA pathway. Our data support a model whereby certain amino acid catabolic pathways, and acquisition of those particular amino acids, are crucial for growth in niches where glucose is not abundant.
[Mh] Termos MeSH primário: Aminoácidos/metabolismo
Proteínas de Bactérias/genética
Carbono/metabolismo
Repressão Catabólica
Ácido Glutâmico/metabolismo
Staphylococcus aureus/crescimento & desenvolvimento
Staphylococcus aureus/metabolismo
[Mh] Termos MeSH secundário: Abscesso/microbiologia
Trifosfato de Adenosina/biossíntese
Trifosfato de Adenosina/metabolismo
Perfilação da Expressão Gênica
Glucose/metabolismo
Glutamato Desidrogenase/genética
Mutação
Staphylococcus aureus/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Amino Acids); 0 (Bacterial Proteins); 3KX376GY7L (Glutamic Acid); 7440-44-0 (Carbon); 8L70Q75FXE (Adenosine Triphosphate); EC 1.4.1.2 (Glutamate Dehydrogenase); IY9XDZ35W2 (Glucose)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:170721
[Lr] Data última revisão:
170721
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170216
[St] Status:MEDLINE


  5 / 141 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28104667
[Au] Autor:Horemans B; Breugelmans P; Hofkens J; Springael D
[Ad] Endereço:KU Leuven, Department of Earth and Environmental Sciences, Division of Soil and Water Management, 3001 Leuven, Belgium.
[Ti] Título:Carbon catabolite repression and cell dispersal affect degradation of the xenobiotic compound 3,4-dichloroaniline in Comamonas testosteroni WDL7 biofilms.
[So] Source:FEMS Microbiol Ecol;93(3), 2017 Mar 01.
[Is] ISSN:1574-6941
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:Organic pollutant degrading biofilms in natural ecosystems and water treatment systems are often exposed to other carbon sources in addition to the pollutant. The availability of auxiliary carbon sources can lead to surplus biomass growth, changes in biofilm structure and carbon catabolite repression (CCR) which together will affect pollutant degradation rate and efficiency of the system. To understand the interplay between these processes, continuous biofilms of the 3,4-dichloroaniline (3,4-DCA) degrading Comamonas testosteroni WDL7-RFP were grown in single- and dual-substrate conditions with 3,4-DCA and/or citrate and reciprocal effects on 3,4-DCA/citrate degradation, biofilm biomass and biofilm structure were examined. The main mechanism affecting 3,4-DCA degradation in biofilms in dual-substrate conditions was citrate-mediated CCR as reflected by a decrease in specific 3,4-DCA degrading activity. Growth on citrate partially compensated for the lowered specific 3,4-DCA degradation activity under dual substrate conditions but not to the extent expected from growth observed under single-substrate conditions with citrate. This was explained by higher residual 3,4-DCA concentrations in the presence of citrate that increased cell dispersal in the biofilms. Our results show hampered pollutant removal in biofilms due to a complex interplay of auxiliary organic C source utilization for growth affecting the specific pollutant degradation rate and changes in cell physiology due to increased exposure to the pollutant as a result of lowered pollutant degradation rates.
[Mh] Termos MeSH primário: Compostos de Anilina/metabolismo
Biofilmes/efeitos dos fármacos
Carbono/metabolismo
Comamonas testosteroni/fisiologia
[Mh] Termos MeSH secundário: Biofilmes/crescimento & desenvolvimento
Biomassa
Repressão Catabólica/efeitos dos fármacos
Ecossistema
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Aniline Compounds); 20KR9WJ4NS (3,4-dichloroaniline); 7440-44-0 (Carbon)
[Em] Mês de entrada:1708
[Cu] Atualização por classe:170822
[Lr] Data última revisão:
170822
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170121
[St] Status:MEDLINE
[do] DOI:10.1093/femsec/fix004


  6 / 141 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28007891
[Au] Autor:Tate JJ; Buford D; Rai R; Cooper TG
[Ad] Endereço:Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163.
[Ti] Título:General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization.
[So] Source:Genetics;205(2):633-655, 2017 Feb.
[Is] ISSN:1943-2631
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Nitrogen catabolite repression (NCR), the ability of Saccharomyces cerevisiae to use good nitrogen sources in preference to poor ones, derives from nitrogen-responsive regulation of the GATA family transcription activators Gln3 and Gat1 In nitrogen-replete conditions, the GATA factors are cytoplasmic and NCR-sensitive transcription minimal. When only poor nitrogen sources are available, Gln3 is nuclear, dramatically increasing GATA factor-mediated transcription. This regulation was originally attributed to mechanistic Tor protein kinase complex 1 (mTorC1)-mediated control of Gln3 However, we recently showed that two regulatory systems act cumulatively to maintain cytoplasmic Gln3 sequestration, only one of which is mTorC1. Present experiments demonstrate that the other previously elusive component is uncharged transfer RNA-activated, Gcn2 protein kinase-mediated general amino acid control (GAAC). Gcn2 and Gcn4 are required for NCR-sensitive nuclear Gln3-Myc localization, and from epistasis experiments Gcn2 appears to function upstream of Ure2 Bmh1/2 are also required for nuclear Gln3-Myc localization and appear to function downstream of Ure2 Overall, Gln3 phosphorylation levels decrease upon loss of Gcn2, Gcn4, or Bmh1/2 Our results add a new dimension to nitrogen-responsive GATA-factor regulation and demonstrate the cumulative participation of the mTorC1 and GAAC pathways, which respond oppositely to nitrogen availability, in the nitrogen-responsive control of catabolic gene expression in yeast.
[Mh] Termos MeSH primário: Proteínas 14-3-3/metabolismo
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
Núcleo Celular/metabolismo
Fatores de Transcrição GATA/metabolismo
Processamento de Proteína Pós-Traducional
Proteínas Serina-Treonina Quinases/metabolismo
Proteínas de Saccharomyces cerevisiae/metabolismo
Fatores de Transcrição/metabolismo
[Mh] Termos MeSH secundário: Proteínas 14-3-3/genética
Transporte Ativo do Núcleo Celular
Aminoácidos/metabolismo
Fatores de Transcrição de Zíper de Leucina Básica/genética
Repressão Catabólica
Epistasia Genética
Fatores de Transcrição GATA/genética
Glutationa Peroxidase/genética
Glutationa Peroxidase/metabolismo
Alvo Mecanístico do Complexo 1 de Rapamicina
Complexos Multiproteicos/genética
Complexos Multiproteicos/metabolismo
Nitrogênio/metabolismo
Fosforilação
Príons/genética
Príons/metabolismo
Proteínas Serina-Treonina Quinases/genética
Saccharomyces cerevisiae/genética
Saccharomyces cerevisiae/metabolismo
Proteínas de Saccharomyces cerevisiae/genética
Serina-Treonina Quinases TOR/genética
Serina-Treonina Quinases TOR/metabolismo
Fatores de Transcrição/genética
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (14-3-3 Proteins); 0 (Amino Acids); 0 (Basic-Leucine Zipper Transcription Factors); 0 (GAT1 protein, S cerevisiae); 0 (GATA Transcription Factors); 0 (GCN4 protein, S cerevisiae); 0 (GLN3 protein, S cerevisiae); 0 (Multiprotein Complexes); 0 (Prions); 0 (Saccharomyces cerevisiae Proteins); 0 (Transcription Factors); EC 1.11.1.9 (Glutathione Peroxidase); EC 1.11.1.9 (URE2 protein, S cerevisiae); EC 2.7.1.1 (TOR Serine-Threonine Kinases); EC 2.7.11.1 (GCN2 protein, S cerevisiae); EC 2.7.11.1 (Mechanistic Target of Rapamycin Complex 1); EC 2.7.11.1 (Protein-Serine-Threonine Kinases); N762921K75 (Nitrogen)
[Em] Mês de entrada:1705
[Cu] Atualização por classe:171116
[Lr] Data última revisão:
171116
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161224
[St] Status:MEDLINE
[do] DOI:10.1534/genetics.116.195800


  7 / 141 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27829583
[Au] Autor:Majidian P; Kuse J; Tanaka K; Najafi H; Zeinalabedini M; Takenaka S; Yoshida KI
[Ad] Endereço:Department of Agrobioscience, Kobe University.
[Ti] Título:Bacillus subtilis GntR regulation modified to devise artificial transient induction systems.
[So] Source:J Gen Appl Microbiol;62(6):277-285, 2017 Jan 25.
[Is] ISSN:1349-8037
[Cp] País de publicação:Japan
[La] Idioma:eng
[Ab] Resumo:We modified GntR regulation in Bacillus subtilis to devise transient induction systems. GntR is the repressor antagonized by gluconate to induce transcription of the gntRKPZ operon for gluconate catabolism. On the other hand, the gnt operon is repressed by glucose via carbon catabolite repression involving CcpA/P-ser-HPr, which binds to two cre sites: one located in the gnt promoter region and the other within the gntR coding region. We initiated gntKPZ encoding of enzymes for gluconate catabolism expressed independently from the operon; this allowed constitutive degradation of gluconate. Both cre sites were mutated to abolish catabolite repression. The mutated gnt promoter was set up to drive the expression of the lacZ reporter under the control of GntR. Even in the presence of glucose, lacZ was induced upon the addition of gluconate and shut down again as gluconate was consumed. Thus, modified GntR regulation enables artificial transient induction. This will allow us to design a flexible metabolic engineering system with genes expressed only temporarily as desired.
[Mh] Termos MeSH primário: Bacillus subtilis/genética
Repressão Catabólica
Genes Bacterianos
Engenharia Genética/métodos
Proteínas Repressoras/genética
Ativação Transcricional
[Mh] Termos MeSH secundário: Bacillus subtilis/efeitos dos fármacos
Proteínas de Ligação a DNA/genética
Regulação Bacteriana da Expressão Gênica
Gluconatos/metabolismo
Gluconatos/farmacologia
Glucose/metabolismo
Engenharia Metabólica/métodos
Óperon
Regiões Promotoras Genéticas
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (DNA-Binding Proteins); 0 (Gluconates); 0 (Repressor Proteins); IY9XDZ35W2 (Glucose); R4R8J0Q44B (gluconic acid)
[Em] Mês de entrada:1704
[Cu] Atualização por classe:170411
[Lr] Data última revisão:
170411
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161111
[St] Status:MEDLINE
[do] DOI:10.2323/jgam.2016.05.004


  8 / 141 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:27622474
[Au] Autor:Alcaíno J; Bravo N; Córdova P; Marcoleta AE; Contreras G; Barahona S; Sepúlveda D; Fernández-Lobato M; Baeza M; Cifuentes V
[Ad] Endereço:Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
[Ti] Título:The Involvement of Mig1 from Xanthophyllomyces dendrorhous in Catabolic Repression: An Active Mechanism Contributing to the Regulation of Carotenoid Production.
[So] Source:PLoS One;11(9):e0162838, 2016.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The red yeast X. dendrorhous is one of the few natural sources of astaxanthin, a carotenoid used in aquaculture for salmonid fish pigmentation and in the cosmetic and pharmaceutical industries for its antioxidant properties. Genetic control of carotenogenesis is well characterized in this yeast; however, little is known about the regulation of the carotenogenesis process. Several lines of evidence have suggested that carotenogenesis is regulated by catabolic repression, and the aim of this work was to identify and functionally characterize the X. dendrorhous MIG1 gene encoding the catabolic repressor Mig1, which mediates transcriptional glucose-dependent repression in other yeasts and fungi. The identified gene encodes a protein of 863 amino acids that demonstrates the characteristic conserved features of Mig1 proteins, and binds in vitro to DNA fragments containing Mig1 boxes. Gene functionality was demonstrated by heterologous complementation in a S. cerevisiae mig1- strain; several aspects of catabolic repression were restored by the X. dendrorhous MIG1 gene. Additionally, a X. dendrorhous mig1- mutant was constructed and demonstrated a higher carotenoid content than the wild-type strain. Most important, the mig1- mutation alleviated the glucose-mediated repression of carotenogenesis in X. dendrorhous: the addition of glucose to mig1- and wild-type cultures promoted the growth of both strains, but carotenoid synthesis was observed only in the mutant strain. Transcriptomic and RT-qPCR analyses revealed that several genes were differentially expressed between X. dendrorhous mig1- and the wild-type strain when cultured with glucose as the sole carbon source. The results obtained in this study demonstrate that catabolic repression in X. dendrorhous is an active process in which the identified MIG1 gene product plays a central role in the regulation of several biological processes, including carotenogenesis.
[Mh] Termos MeSH primário: Basidiomycota/genética
Basidiomycota/metabolismo
Carotenoides/biossíntese
Genes Fúngicos
[Mh] Termos MeSH secundário: Sequência de Aminoácidos
Basidiomycota/crescimento & desenvolvimento
Vias Biossintéticas/genética
Repressão Catabólica/genética
Proteínas Fúngicas/genética
Proteínas Fúngicas/metabolismo
Regulação Fúngica da Expressão Gênica
Teste de Complementação Genética
Glucose/metabolismo
Mutação
Proteínas Repressoras/genética
Proteínas Repressoras/metabolismo
Saccharomyces cerevisiae/genética
Saccharomyces cerevisiae/metabolismo
Homologia de Sequência de Aminoácidos
Xantofilas/biossíntese
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Fungal Proteins); 0 (Repressor Proteins); 0 (Xanthophylls); 36-88-4 (Carotenoids); 8XPW32PR7I (astaxanthine); IY9XDZ35W2 (Glucose)
[Em] Mês de entrada:1707
[Cu] Atualização por classe:170731
[Lr] Data última revisão:
170731
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160914
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0162838


  9 / 141 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:27613678
[Au] Autor:Meisner J; Goldberg JB
[Ad] Endereço:Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.
[Ti] Título:The Escherichia coli rhaSR-PrhaBAD Inducible Promoter System Allows Tightly Controlled Gene Expression over a Wide Range in Pseudomonas aeruginosa.
[So] Source:Appl Environ Microbiol;82(22):6715-6727, 2016 Nov 15.
[Is] ISSN:1098-5336
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The araC-ParaBAD inducible promoter system is tightly controlled and allows gene expression to be modulated over a wide range in Escherichia coli, which has led to its widespread use in other bacteria. Although anecdotal evidence suggests that araC-ParaBAD is leaky in Pseudomonas aeruginosa, neither a thorough analysis of this inducible promoter system in P. aeruginosa nor a concerted effort to identify alternatives with improved functionality has been reported. Here, we evaluated the functionality of the araC-ParaBAD system in P. aeruginosa Using transcriptional fusions to a lacZ reporter gene, we determined that the noninduced expression from araC-ParaBAD is high and cannot be reduced by carbon catabolite repression as it can in E. coli Modulating translational initiation by altering ribosome-binding site strength reduced the noninduced activity but also decreased the maximal induced activity and narrowed the induction range. Integrating the inducible promoter system into the posttranscriptional regulatory network that controls catabolite repression in P. aeruginosa significantly decreased the noninduced activity and increased the induction range. In addition to these improvements in the functionality of the araC-ParaBAD system, we found that the lacI -Ptac and rhaSR-PrhaBAD inducible promoter systems had significantly lower noninduced expression and were inducible over a broader range than araC-ParaBAD We demonstrated that noninduced expression from the araC-ParaBAD system supported the function of genes involved in antibiotic resistance and tryptophan biosynthesis in P. aeruginosa, problems that were avoided with rhaSR-PrhaBAD. rhaSR-PrhaBAD is tightly controlled, allows gene expression over a wide range, and represents a significant improvement over araC-ParaBAD in P. aeruginosa IMPORTANCE: We report the shortcomings of the commonly used Escherichia coli araC-ParaBAD inducible promoter system in Pseudomonas aeruginosa, successfully reengineered it to improve its functionality, and show that the E. coli rhaSR-PrhaBAD system is tightly controlled and allows inducible gene expression over a wide range in P. aeruginosa.
[Mh] Termos MeSH primário: Proteínas de Bactérias/genética
Escherichia coli/genética
Regulação Bacteriana da Expressão Gênica
Regiões Promotoras Genéticas
Pseudomonas aeruginosa/genética
[Mh] Termos MeSH secundário: Fator de Transcrição AraC/genética
Sítios de Ligação
Repressão Catabólica/genética
Farmacorresistência Bacteriana/genética
Proteínas de Escherichia coli/genética
Genes Reporter
Engenharia Genética/métodos
Óperon Lac
Fatores de Transcrição/genética
Triptofano/biossíntese
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (AraC Transcription Factor); 0 (AraC protein, E coli); 0 (Bacterial Proteins); 0 (Escherichia coli Proteins); 0 (Transcription Factors); 8DUH1N11BX (Tryptophan)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171031
[Lr] Data última revisão:
171031
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160911
[St] Status:MEDLINE


  10 / 141 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
PubMed Central Texto completo
Texto completo
[PMID]:27585813
[Au] Autor:Li C; Lin F; Li Y; Wei W; Wang H; Qin L; Zhou Z; Li B; Wu F; Chen Z
[Ad] Endereço:State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
[Ti] Título:A ß-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.
[So] Source:Microb Cell Fact;15(1):151, 2016 Sep 01.
[Is] ISSN:1475-2859
[Cp] País de publicação:England
[La] Idioma:eng
[Ab] Resumo:BACKGROUND: The conversion of cellulose by cellulase to fermentable sugars for biomass-based products such as cellulosic biofuels, biobased fine chemicals and medicines is an environment-friendly and sustainable process, making wastes profitable and bringing economic benefits. Trichoderma reesei is the well-known major workhorse for cellulase production in industry, but the low ß-glucosidase activity in T. reesei cellulase leads to inefficiency in biomass degradation and limits its industrial application. Thus, there are ongoing interests in research to develop methods to overcome this insufficiency. Moreover, although ß-glucosidases have been demonstrated to influence cellulase production and participate in the regulation of cellulase production, the underlying mechanism remains unclear. RESULTS: The T. reesei recombinant strain TRB1 was constructed from T. reesei RUT-C30 by the T-DNA-based mutagenesis. Compared to RUT-C30, TRB1 displays a significant enhancement of extracellular ß-glucosidase (BGL1) activity with 17-fold increase, a moderate increase of both the endoglucanase (EG) activity and the exoglucanase (CBH) activity, a minor improvement of the total filter paper activity, and a faster cellulase induction. This superiority of TRB1 over RUT-C30 is independent on carbon sources and improves the saccharification ability of TRB1 cellulase on pretreated corn stover. Furthermore, TRB1 shows better resistance to carbon catabolite repression than RUT-C30. Secretome characterization of TRB1 shows that the amount of CBH, EG and BGL in the supernatant of T. reesei TRB1 was indeed increased along with the enhanced activities of these three enzymes. Surprisingly, qRT-PCR and gene cloning showed that in TRB1 ß-glucosidase cel3D was mutated through the random insertion by AMT and was not expressed. CONCLUSIONS: The T. reesei recombinant strain TRB1 constructed in this study is more desirable for industrial application than the parental strain RUT-C30, showing extracellular ß-glucosidase hyper production, high cellulase production within a shorter time and a better resistance to carbon catabolite repression. Disruption of ß-glucosidase cel3D in TRB1 was identified, which might contribute to the superiority of TRB1 over RUT-C30 and might play a role in the cellulase production. These results laid a foundation for future investigations to further improve cellulase enzymatic efficiency and reduce cost for T. reesei cellulase production.
[Mh] Termos MeSH primário: Celulase/biossíntese
Trichoderma/genética
beta-Glucosidase/genética
beta-Glucosidase/metabolismo
[Mh] Termos MeSH secundário: Biomassa
Carbono/metabolismo
Repressão Catabólica/genética
Celulase/economia
Clonagem Molecular
DNA Bacteriano
Fermentação
Microbiologia Industrial/métodos
Mutagênese
Mutação
Reação em Cadeia da Polimerase em Tempo Real
Trichoderma/enzimologia
Trichoderma/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (DNA, Bacterial); 0 (T-DNA); 7440-44-0 (Carbon); EC 3.2.1.21 (beta-Glucosidase); EC 3.2.1.4 (Cellulase)
[Em] Mês de entrada:1704
[Cu] Atualização por classe:170407
[Lr] Data última revisão:
170407
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:160903
[St] Status:MEDLINE
[do] DOI:10.1186/s12934-016-0550-3



página 1 de 15 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde