Base de dados : MEDLINE
Pesquisa : G07.180.562.094 [Categoria DeCS]
Referências encontradas : 9784 [refinar]
Mostrando: 1 .. 10   no formato [Detalhado]

página 1 de 979 ir para página                         

  1 / 9784 MEDLINE  
              next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29181927
[Au] Autor:Elstad M
[Ti] Título:Hva får din indre klokke til å tikke?.
[So] Source:Tidsskr Nor Laegeforen;137(22), 2017 11 28.
[Is] ISSN:0807-7096
[Cp] País de publicação:Norway
[La] Idioma:nor
[Mh] Termos MeSH primário: Relógios Biológicos/genética
Ritmo Circadiano/genética
Prêmio Nobel
[Mh] Termos MeSH secundário: Seres Humanos
[Pt] Tipo de publicação:EDITORIAL
[Em] Mês de entrada:1803
[Cu] Atualização por classe:180301
[Lr] Data última revisão:
180301
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171129
[St] Status:MEDLINE
[do] DOI:10.4045/tidsskr.17.0901


  2 / 9784 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29320580
[Au] Autor:Kim KH; Heo HI; Park SH
[Ad] Endereço:Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
[Ti] Título:Detection of fast oscillating magnetic fields using dynamic multiple TR imaging and Fourier analysis.
[So] Source:PLoS One;13(1):e0189916, 2018.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Neuronal oscillations produce oscillating magnetic fields. There have been trials to detect neuronal oscillations using MRI, but the detectability in in vivo is still in debate. Major obstacles to detecting neuronal oscillations are (i) weak amplitudes, (ii) fast oscillations, which are faster than MRI temporal resolution, and (iii) random frequencies and on/off intervals. In this study, we proposed a new approach for direct detection of weak and fast oscillating magnetic fields. The approach consists of (i) dynamic acquisitions using multiple times to repeats (TRs) and (ii) an expanded frequency spectral analysis. Gradient echo echo-planar imaging was used to test the feasibility of the proposed approach with a phantom generating oscillating magnetic fields with various frequencies and amplitudes and random on/off intervals. The results showed that the proposed approach could precisely detect the weak and fast oscillating magnetic fields with random frequencies and on/off intervals. Complex and phase spectra showed reliable signals, while no meaningful signals were observed in magnitude spectra. A two-TR approach provided an absolute frequency spectrum above Nyquist sampling frequency pixel by pixel with no a priori target frequency information. The proposed dynamic multiple-TR imaging and Fourier analysis are promising for direct detection of neuronal oscillations and potentially applicable to any pulse sequences.
[Mh] Termos MeSH primário: Imagem Ecoplanar/métodos
Análise de Fourier
Campos Magnéticos
[Mh] Termos MeSH secundário: Relógios Biológicos
Simulação por Computador
Imagens de Fantasmas
Análise Espectral/métodos
Transmissão Sináptica
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Em] Mês de entrada:1802
[Cu] Atualização por classe:180214
[Lr] Data última revisão:
180214
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:180111
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0189916


  3 / 9784 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
[PMID]:28930523
[Au] Autor:Cataldi M; Vigliotti C
[Ad] Endereço:Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Italy, cataldi@unina.it.
[Ti] Título:The evolving concept of the intrinsic hippocampal theta/gamma oscillator.
[So] Source:Front Biosci (Schol Ed);10:143-165, 2018 01 01.
[Is] ISSN:1945-0524
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Three main types of electrical oscillations are recorded from the hippocampus : theta (θ), gamma (γ) and sharp wave ripples with frequency bands of 4-12, 25-100 and 110-250 Hz, respectively. Theta activity is the more robust of them, and has important physiological roles because it is involved in spatial navigation, memory formation and memory retrieval. Classical lesion studies have suggested that the hippocampus passively follows the θ  rhythm generated in the septum by neurons that are synaptically connected with hippocampal neurons though septo-hippocampal connections. This view has been questioned since several studies have shown that oscillations in the θ range can be recorded in hippocampal preparations thus indicating that the hippocampus itself can act as a θ oscillator. In this review, we will describe how the paradigm of the intrinsic θ oscillator has been changing over the years from simple models that have proposed single hippocampal lamellae to contain the θ oscillator to the current models that include some degree of septo-temporal integration.
[Mh] Termos MeSH primário: Ritmo Gama/fisiologia
Hipocampo/fisiologia
Ritmo Teta/fisiologia
[Mh] Termos MeSH secundário: Animais
Relógios Biológicos/fisiologia
Seres Humanos
Neurônios/fisiologia
[Pt] Tipo de publicação:JOURNAL ARTICLE; REVIEW
[Em] Mês de entrada:1712
[Cu] Atualização por classe:180122
[Lr] Data última revisão:
180122
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170921
[St] Status:MEDLINE


  4 / 9784 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:27775529
[Au] Autor:Shitiri E; Cho HS
[Ti] Título:A Biochemical Oscillator Using Excitatory Molecules for Nanonetworks.
[So] Source:IEEE Trans Nanobioscience;15(7):765-774, 2016 10.
[Is] ISSN:1558-2639
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:For nanonetworks to be able to achieve large-scale functionality, such as to respond collectively to a trigger, synchrony between nanomachines is essential. However, to facilitate synchronization, some sort of physical clocking mechanism is required, such as the oscillators driven by auto-inhibitory molecules or by auto-inducing molecules. In this study, taking inspiration from the widely studied biological oscillatory phenomena called Calcium (Ca ) oscillations, we undertake a different approach to design an oscillator. Our model employs three different types of excitatory molecules that work in tandem to generate oscillatory phenomenon in the concentration levels of the molecule of interest. The main objective of the study is to model a high frequency biochemical oscillator, along with the investigations to identify and determine the parameters that affect the period of the oscillations. The investigations entail and highlight the design of the reserve unit, a reservoir of the molecule of interest, as a key factor in realizing a high frequency stable biochemical oscillator.
[Mh] Termos MeSH primário: Relógios Biológicos/fisiologia
Cálcio/metabolismo
Computadores Moleculares
Nanotecnologia/métodos
[Mh] Termos MeSH secundário: Sinalização do Cálcio
Modelos Biológicos
Nanoestruturas/química
[Pt] Tipo de publicação:JOURNAL ARTICLE; RESEARCH SUPPORT, NON-U.S. GOV'T
[Nm] Nome de substância:
SY7Q814VUP (Calcium)
[Em] Mês de entrada:1709
[Cu] Atualização por classe:171222
[Lr] Data última revisão:
171222
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:161025
[St] Status:MEDLINE
[do] DOI:10.1109/TNB.2016.2616539


  5 / 9784 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:29073146
[Au] Autor:Li G; Henriquez CS; Fröhlich F
[Ad] Endereço:Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
[Ti] Título:Unified thalamic model generates multiple distinct oscillations with state-dependent entrainment by stimulation.
[So] Source:PLoS Comput Biol;13(10):e1005797, 2017 Oct.
[Is] ISSN:1553-7358
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The thalamus plays a critical role in the genesis of thalamocortical oscillations, yet the underlying mechanisms remain elusive. To understand whether the isolated thalamus can generate multiple distinct oscillations, we developed a biophysical thalamic model to test the hypothesis that generation of and transition between distinct thalamic oscillations can be explained as a function of neuromodulation by acetylcholine (ACh) and norepinephrine (NE) and afferent synaptic excitation. Indeed, the model exhibited four distinct thalamic rhythms (delta, sleep spindle, alpha and gamma oscillations) that span the physiological states corresponding to different arousal levels from deep sleep to focused attention. Our simulation results indicate that generation of these distinct thalamic oscillations is a result of both intrinsic oscillatory cellular properties and specific network connectivity patterns. We then systematically varied the ACh/NE and input levels to generate a complete map of the different oscillatory states and their transitions. Lastly, we applied periodic stimulation to the thalamic network and found that entrainment of thalamic oscillations is highly state-dependent. Our results support the hypothesis that ACh/NE modulation and afferent excitation define thalamic oscillatory states and their response to brain stimulation. Our model proposes a broader and more central role of the thalamus in the genesis of multiple distinct thalamo-cortical rhythms than previously assumed.
[Mh] Termos MeSH primário: Acetilcolina/metabolismo
Relógios Biológicos/fisiologia
Modelos Neurológicos
Rede Nervosa/fisiologia
Neurotransmissores/metabolismo
Norepinefrina/metabolismo
Tálamo/fisiologia
[Mh] Termos MeSH secundário: Simulação por Computador
Estimulação Encefálica Profunda/métodos
Retroalimentação Fisiológica/fisiologia
Seres Humanos
Oscilometria/métodos
Transmissão Sináptica/fisiologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Neurotransmitter Agents); N9YNS0M02X (Acetylcholine); X4W3ENH1CV (Norepinephrine)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171119
[Lr] Data última revisão:
171119
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171027
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pcbi.1005797


  6 / 9784 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28967909
[Au] Autor:Davis P; Zaki Y; Maguire J; Reijmers LG
[Ad] Endereço:Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA.
[Ti] Título:Cellular and oscillatory substrates of fear extinction learning.
[So] Source:Nat Neurosci;20(11):1624-1633, 2017 Nov.
[Is] ISSN:1546-1726
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a combination of chemogenetics, activity-based neuronal-ensemble labeling and in vivo electrophysiology, we found that fear extinction learning confers on parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6-12 Hz oscillation and a fear-associated 3-6 Hz oscillation within the BLA. Loss of this competition increases a 3-6 Hz oscillatory signature, with BLA→medial prefrontal cortex directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning.
[Mh] Termos MeSH primário: Complexo Nuclear Basolateral da Amígdala/fisiologia
Relógios Biológicos/fisiologia
Extinção Psicológica/fisiologia
Medo/fisiologia
Aprendizagem/fisiologia
Córtex Pré-Frontal/fisiologia
[Mh] Termos MeSH secundário: Animais
Complexo Nuclear Basolateral da Amígdala/citologia
Medo/psicologia
Feminino
Masculino
Camundongos
Camundongos da Linhagem 129
Camundongos Transgênicos
Córtex Pré-Frontal/citologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171102
[Lr] Data última revisão:
171102
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:171003
[St] Status:MEDLINE
[do] DOI:10.1038/nn.4651


  7 / 9784 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28957668
[Au] Autor:Resch JM; Fenselau H; Madara JC; Wu C; Campbell JN; Lyubetskaya A; Dawes BA; Tsai LT; Li MM; Livneh Y; Ke Q; Kang PM; Fejes-Tóth G; Náray-Fejes-Tóth A; Geerling JC; Lowell BB
[Ad] Endereço:Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
[Ti] Título:Aldosterone-Sensing Neurons in the NTS Exhibit State-Dependent Pacemaker Activity and Drive Sodium Appetite via Synergy with Angiotensin II Signaling.
[So] Source:Neuron;96(1):190-206.e7, 2017 Sep 27.
[Is] ISSN:1097-4199
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Sodium deficiency increases angiotensin II (ATII) and aldosterone, which synergistically stimulate sodium retention and consumption. Recently, ATII-responsive neurons in the subfornical organ (SFO) and aldosterone-sensitive neurons in the nucleus of the solitary tract (NTS neurons) were shown to drive sodium appetite. Here we investigate the basis for NTS neuron activation, identify the circuit by which NTS neurons drive appetite, and uncover an interaction between the NTS circuit and ATII signaling. NTS neurons respond to sodium deficiency with spontaneous pacemaker-like activity-the consequence of "cardiac" HCN and Na 1.5 channels. Remarkably, NTS neurons are necessary for sodium appetite, and with concurrent ATII signaling their activity is sufficient to produce rapid consumption. Importantly, NTS neurons stimulate appetite via projections to the vlBNST, which is also the effector site for ATII-responsive SFO neurons. The interaction between angiotensin signaling and NTS neurons provides a neuronal context for the long-standing "synergy hypothesis" of sodium appetite regulation.
[Mh] Termos MeSH primário: Aldosterona/fisiologia
Angiotensina II/fisiologia
Relógios Biológicos/fisiologia
Neurônios/fisiologia
Transdução de Sinais
Sódio/fisiologia
Núcleo Solitário/fisiologia
[Mh] Termos MeSH secundário: Animais
Ingestão de Alimentos/fisiologia
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia
Masculino
Camundongos
Camundongos Transgênicos
Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia
Vias Neurais/fisiologia
Núcleos Septais/fisiologia
Sódio/deficiência
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels); 0 (NAV1.5 Voltage-Gated Sodium Channel); 0 (Scn5a protein, mouse); 11128-99-7 (Angiotensin II); 4964P6T9RB (Aldosterone); 9NEZ333N27 (Sodium)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171014
[Lr] Data última revisão:
171014
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170929
[St] Status:MEDLINE


  8 / 9784 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28945810
[Au] Autor:Sirenko SG; Yang D; Maltseva LA; Kim MS; Lakatta EG; Maltsev VA
[Ad] Endereço:Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America.
[Ti] Título:Spontaneous, local diastolic subsarcolemmal calcium releases in single, isolated guinea-pig sinoatrial nodal cells.
[So] Source:PLoS One;12(9):e0185222, 2017.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Uptake and release calcium from the sarcoplasmic reticulum (SR) (dubbed "calcium clock"), in the form of spontaneous, rhythmic, local diastolic calcium releases (LCRs), together with voltage-sensitive ion channels (membrane clock) form a coupled system that regulates the action potential (AP) firing rate. LCRs activate Sodium/Calcium exchanger (NCX) that accelerates diastolic depolarization and thus participating in regulation of the time at which the next AP will occur. Previous studies in rabbit SA node cells (SANC) demonstrated that the basal AP cycle length (APCL) is tightly coupled to the basal LCR period (time from the prior AP-induced Ca2+ transient to the diastolic LCR occurrence), and that this coupling is further modulated by autonomic receptor stimulation. Although spontaneous LCRs during diastolic depolarization have been reported in SANC of various species (rabbit, cat, mouse, toad), prior studies have failed to detect LCRs in spontaneously beating SANC of guinea-pig, a species that has been traditionally used in studies of cardiac pacemaker cell function. We performed a detailed investigation of whether guinea-pig SANC generate LCRs and whether they play a similar key role in regulation of the AP firing rate. We used two different approaches, 2D high-speed camera and classical line-scan confocal imaging. Positioning the scan-line beneath sarcolemma, parallel to the long axis of the cell, we found that rhythmically beating guinea-pig SANC do, indeed, generate spontaneous, diastolic LCRs beneath the surface membrane. The average key LCR characteristics measured in confocal images in guinea-pig SANC were comparable to rabbit SANC, both in the basal state and in the presence of ß-adrenergic receptor stimulation. Moreover, the relationship between the LCR period and APCL was subtended by the same linear function. Thus, LCRs in guinea-pig SANC contribute to the diastolic depolarization and APCL regulation. Our findings indicate that coupled-clock system regulation of APCL is a general, species-independent, mechanism of pacemaker cell normal automaticity. Lack of LCRs in prior studies is likely explained by technical issues, as individual LCRs are small stochastic events occurring mainly near the cell border.
[Mh] Termos MeSH primário: Sinalização do Cálcio
Nó Sinoatrial/metabolismo
[Mh] Termos MeSH secundário: Potenciais de Ação
Animais
Relógios Biológicos
Gatos
Diástole
Cobaias
Técnicas In Vitro
Camundongos
Microscopia Confocal
Microscopia de Vídeo
Coelhos
Receptores Adrenérgicos beta/metabolismo
Sarcolema/metabolismo
Análise de Célula Única
Nó Sinoatrial/citologia
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Receptors, Adrenergic, beta)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171023
[Lr] Data última revisão:
171023
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170926
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0185222


  9 / 9784 MEDLINE  
              first record previous record next record last record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28942924
[Au] Autor:Hubaud A; Regev I; Mahadevan L; Pourquié O
[Ad] Endereço:Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch 67400, France; Department of Genetics, Harvard Medical School and Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA.
[Ti] Título:Excitable Dynamics and Yap-Dependent Mechanical Cues Drive the Segmentation Clock.
[So] Source:Cell;171(3):668-682.e11, 2017 Oct 19.
[Is] ISSN:1097-4172
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:The periodic segmentation of the vertebrate body axis into somites, and later vertebrae, relies on a genetic oscillator (the segmentation clock) driving the rhythmic activity of signaling pathways in the presomitic mesoderm (PSM). To understand whether oscillations are an intrinsic property of individual cells or represent a population-level phenomenon, we established culture conditions for stable oscillations at the cellular level. This system was used to demonstrate that oscillations are a collective property of PSM cells that can be actively triggered in vitro by a dynamical quorum sensing signal involving Yap and Notch signaling. Manipulation of Yap-dependent mechanical cues is sufficient to predictably switch isolated PSM cells from a quiescent to an oscillatory state in vitro, a behavior reminiscent of excitability in other systems. Together, our work argues that the segmentation clock behaves as an excitable system, introducing a broader paradigm to study such dynamics in vertebrate morphogenesis.
[Mh] Termos MeSH primário: Relógios Biológicos
Transdução de Sinais
[Mh] Termos MeSH secundário: Proteínas Adaptadoras de Transdução de Sinal/metabolismo
Animais
Embrião de Galinha
Embrião de Mamíferos/metabolismo
Embrião não Mamífero/metabolismo
Mesoderma/metabolismo
Camundongos
Morfogênese
Fosfoproteínas/metabolismo
Percepção de Quorum
Somitos/metabolismo
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Adaptor Proteins, Signal Transducing); 0 (Phosphoproteins); 0 (Yap protein, mouse)
[Em] Mês de entrada:1711
[Cu] Atualização por classe:171101
[Lr] Data última revisão:
171101
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170926
[St] Status:MEDLINE


  10 / 9784 MEDLINE  
              first record previous record
seleciona
para imprimir
Fotocópia
Texto completo
[PMID]:28934329
[Au] Autor:Gluck JM; Herren AW; Yechikov S; Kao HKJ; Khan A; Phinney BS; Chiamvimonvat N; Chan JW; Lieu DK
[Ad] Endereço:Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis; Davis, CA, United States of America.
[Ti] Título:Biochemical and biomechanical properties of the pacemaking sinoatrial node extracellular matrix are distinct from contractile left ventricular matrix.
[So] Source:PLoS One;12(9):e0185125, 2017.
[Is] ISSN:1932-6203
[Cp] País de publicação:United States
[La] Idioma:eng
[Ab] Resumo:Extracellular matrix plays a role in differentiation and phenotype development of its resident cells. Although cardiac extracellular matrix from the contractile tissues has been studied and utilized in tissue engineering, extracellular matrix properties of the pacemaking sinoatrial node are largely unknown. In this study, the biomechanical properties and biochemical composition and distribution of extracellular matrix in the sinoatrial node were investigated relative to the left ventricle. Extracellular matrix of the sinoatrial node was found to be overall stiffer than that of the left ventricle and highly heterogeneous with interstitial regions composed of predominantly fibrillar collagens and rich in elastin. The extracellular matrix protein distribution suggests that resident pacemaking cardiomyocytes are enclosed in fibrillar collagens that can withstand greater tensile strength while the surrounding elastin-rich regions may undergo deformation to reduce the mechanical strain in these cells. Moreover, basement membrane-associated adhesion proteins that are ligands for integrins were of low abundance in the sinoatrial node, which may decrease force transduction in the pacemaking cardiomyocytes. In contrast to extracellular matrix of the left ventricle, extracellular matrix of the sinoatrial node may reduce mechanical strain and force transduction in pacemaking cardiomyocytes. These findings provide the criteria for a suitable matrix scaffold for engineering biopacemakers.
[Mh] Termos MeSH primário: Matriz Extracelular/metabolismo
Ventrículos do Coração/metabolismo
Nó Sinoatrial/metabolismo
[Mh] Termos MeSH secundário: Animais
Membrana Basal/química
Membrana Basal/metabolismo
Membrana Basal/ultraestrutura
Relógios Biológicos/fisiologia
Fenômenos Biomecânicos
Colágeno/metabolismo
Colágeno/ultraestrutura
Elasticidade
Elastina/metabolismo
Elastina/ultraestrutura
Matriz Extracelular/química
Matriz Extracelular/ultraestrutura
Fibronectinas/metabolismo
Fibronectinas/ultraestrutura
Imunofluorescência
Ventrículos do Coração/química
Ventrículos do Coração/ultraestrutura
Espectrometria de Massas
Microscopia de Força Atômica
Microscopia Eletroquímica de Varredura
Miócitos Cardíacos/química
Miócitos Cardíacos/metabolismo
Proteoma
Proteômica
Nó Sinoatrial/química
Nó Sinoatrial/ultraestrutura
Suínos
Resistência à Tração
[Pt] Tipo de publicação:JOURNAL ARTICLE
[Nm] Nome de substância:
0 (Fibronectins); 0 (Proteome); 9007-34-5 (Collagen); 9007-58-3 (Elastin)
[Em] Mês de entrada:1710
[Cu] Atualização por classe:171024
[Lr] Data última revisão:
171024
[Sb] Subgrupo de revista:IM
[Da] Data de entrada para processamento:170922
[St] Status:MEDLINE
[do] DOI:10.1371/journal.pone.0185125



página 1 de 979 ir para página                         
   


Refinar a pesquisa
  Base de dados : MEDLINE Formulário avançado   

    Pesquisar no campo  
1  
2
3
 
           



Search engine: iAH v2.6 powered by WWWISIS

BIREME/OPAS/OMS - Centro Latino-Americano e do Caribe de Informação em Ciências da Saúde